1932

Abstract

X-ray techniques have been used for more than a century to study the atomic and electronic structure in practically any type of material. The advent of correlated electron systems, in particular complex oxides, brought about new scientific challenges and opportunities for the advancement of conventional X-ray methods. In this context, the need for new approaches capable of selectively sensing new forms of orders involving all degrees of freedom—charge, orbital, spin, and lattice—paved the way for the emergence and success of resonant X-ray scattering, which has become an increasingly popular and powerful tool for the study of electronic ordering phenomena in solids. We review the recent resonant X-ray scattering breakthroughs in the copper oxide high-temperature superconductors, in particular regarding the phenomenon of charge order, a broken-symmetry state occurring when valence electrons self-organize into periodic structures. After a brief historical perspective on charge order, we outline the milestones in the development of resonant X-ray scattering as well as the basic theoretical formalism underlying its unique capabilities. The rest of the review focuses on the recent contributions of resonant scattering to the advancements in our description and understanding of charge order. To conclude, we propose a series of present and upcoming challenges and discuss the future outlook for this technique.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031115-011401
2016-03-10
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/7/1/annurev-conmatphys-031115-011401.html?itemId=/content/journals/10.1146/annurev-conmatphys-031115-011401&mimeType=html&fmt=ahah

Literature Cited

  1. Dagotto E. 1.  2005. Science 309:257–62 [Google Scholar]
  2. Norman MR. 2.  2011. Science 332:196–200 [Google Scholar]
  3. Zaanen J, Sawatzky GA, Allen JW. 3.  1985. Phys. Rev. Lett. 55:418–21 [Google Scholar]
  4. Lee PA, Nagaosa N, Wen XG. 4.  2006. Rev. Mod. Phys. 78:17–85 [Google Scholar]
  5. Bednorz JG, Müller KA. 5.  1986. Zeit. Phys. B 64:189–93 [Google Scholar]
  6. Emery VJ, Kivelson SA, Tranquada JM. 6.  1999. PNAS 96:8814–17 [Google Scholar]
  7. Kivelson SA, Bindloss IP, Fradkin E, Oganesyan V, Tranquada JM. 7.  et al. 2003. Rev. Mod. Phys. 75:1201–41 [Google Scholar]
  8. Sachdev S, Demler E. 8.  2004. Phys. Rev. B 69:144504 [Google Scholar]
  9. Birgeneau RJ, Stock C, Tranquada JM, Yamada K. 9.  2006. J. Phys. Soc. Jpn. 75:111003 [Google Scholar]
  10. Varma CM. 10.  2006. Phys. Rev. B 73:155113 [Google Scholar]
  11. Li Y, Baledent V, Barisic N, Cho Y, Fauque B. 11.  et al. 2008. Nature 455:372–75 [Google Scholar]
  12. Berg E, Fradkin E, Kivelson S, Tranquada J. 12.  2009. N. J. Phys. 11:115004 [Google Scholar]
  13. Davis JCS, Lee DH. 13.  2013. PNAS 110:17623 [Google Scholar]
  14. Fradkin E, Kivelson SA, Tranquada JM. 14.  2015. Rev. Mod. Phys. 87:457–82 [Google Scholar]
  15. Tranquada JM, Moudden AH, Goldman AI, Zolliker P, Cox DE. 15.  et al. 1988. Phys. Rev. B 38:2477–85 [Google Scholar]
  16. Birgeneau RJ, Gabbe DR, Jenssen HP, Kastner MA, Picone PJ. 16.  et al. 1988. Phys. Rev. B 38:6614–23 [Google Scholar]
  17. Yoshizawa H, Mitsuda S, Kitazawa H, Katsumata K. 17.  1988. J. Phys. Soc. Jpn. 57:3686–89 [Google Scholar]
  18. Birgeneau RJ, Endoh Y, Kakurai K, Hidaka Y, Murakami T. 18.  et al. 1989. Phys. Rev. B 39:2868–71 [Google Scholar]
  19. Thurston TR, Birgeneau RJ, Kastner MA, Preyer NW, Shirane G. 19.  et al. 1989. Phys. Rev. B 40:4585–95 [Google Scholar]
  20. Fujita M, Yamada K, Hiraka H, Gehring PM, Lee SH. 20.  et al. 2002. Phys. Rev. B 65:064505 [Google Scholar]
  21. Cheong SW, Aeppli G, Mason TE, Mook H, Hayden SM. 21.  et al. 1991. Phys. Rev. Lett. 67:1791–94 [Google Scholar]
  22. Schrieffer JR, Wen XG, Zhang SC. 22.  1988. Phys. Rev. Lett. 60:944–47 [Google Scholar]
  23. Machida K. 23.  1989. Phys. C: Supercond. 158:192–96 [Google Scholar]
  24. Castellani C, Di Castro C, Grilli M. 24.  1995. Phys. Rev. Lett. 75:4650–53 [Google Scholar]
  25. Zaanen J, Gunnarsson O. 25.  1989. Phys. Rev. B 40:7391 [Google Scholar]
  26. Poilblanc D, Rice TM. 26.  1989. Phys. Rev. B 39:9749–52 [Google Scholar]
  27. Schulz HJ. 27.  1990. Phys. Rev. Lett. 64:1445–48 [Google Scholar]
  28. Emery VJ, Kivelson SA, Lin HQ. 28.  1990. Phys. Rev. Lett. 64:475–78 [Google Scholar]
  29. Tranquada JM, Buttrey DJ, Sachan V, Lorenzo JE. 29.  1994. Phys. Rev. Lett. 73:1003–6 [Google Scholar]
  30. Tranquada JM, Sternlieb BJ, Axe JD, Nakamura Y, Uchida S. 30.  1995. Nature 375:561–63 [Google Scholar]
  31. Tranquada JM, Axe JD, Ichikawa N, Nakamura Y, Uchida S, Nachumi B. 31.  1996. Phys. Rev. B 54:7489–99 [Google Scholar]
  32. Fujita M, Goka H, Yamada K, Matsuda M. 32.  2002. Phys. Rev. Lett. 88:167008 [Google Scholar]
  33. v. Zimmermann M, Vigliante A, Niemller T, Ichikawa N, Frello T. 33.  et al. 1998. Europhys. Lett. 41:629 [Google Scholar]
  34. Kastner MA, Birgeneau RJ, Shirane G, Endoh Y. 34.  1998. Rev. Mod. Phys. 70:897–928 [Google Scholar]
  35. Hoffman JE, Hudson EW, Lang KM, Madhavan V, Eisaki H. 35.  et al. 2002. Science 295:466–69 [Google Scholar]
  36. Chen HD, Hu JP, Capponi S, Arrigoni E, Zhang SC. 36.  2002. Phys. Rev. Lett. 89:137004 [Google Scholar]
  37. Lake B, Aeppli G, Clausen KN, McMorrow DF, Lefmann K. 37.  et al. 2001. Science 291:1759–62 [Google Scholar]
  38. Tranquada JM, Axe JD, Ichikawa N, Moodenbaugh AR, Nakamura Y, Uchida S. 38.  1997. Phys. Rev. Lett. 78:338–41 [Google Scholar]
  39. Howald C, Eisaki H, Kaneko N, Kapitulnik A. 39.  2003. PNAS 100:9705–9 [Google Scholar]
  40. Hoffman JE, McElroy K, Lee DH, Lang KM, Eisaki H. 40.  et al. 2002. Science 297:1148–51 [Google Scholar]
  41. Vershinin M, Misra S, Ono S, Abe Y, Ando Y, Yazdani A. 41.  2004. Science 303:1995–98 [Google Scholar]
  42. Hanaguri T, Lupien C, Kohsaka Y, Lee DH, Azuma M. 42.  et al. 2004. Nature 430:1001–5 [Google Scholar]
  43. Kohsaka Y, Taylor C, Fujita K, Schmidt A, Lupien C. 43.  et al. 2007. Science 315:1380–85 [Google Scholar]
  44. Kohsaka Y, Taylor C, Wahl P, Schmidt A, Lee J. 44.  et al. 2008. Nature 454:1072–78 [Google Scholar]
  45. Lee J, Fujita K, Schmidt AR, Kim CK, Eisaki H. 45.  et al. 2009. Science 325:1099–103 [Google Scholar]
  46. Wise WD, Boyer MC, Chatterjee K, Kondo T, Takeuchi T. 46.  et al. 2008. Nat. Phys. 4:696–99 [Google Scholar]
  47. Mesaros A, Fujita K, Eisaki H, Uchida S, Davis JC. 47.  et al. 2011. Science 333:426–30 [Google Scholar]
  48. Fujita K, Schmidt AR, Kim EA, Lawler MJ, Lee DH. 48.  et al. 2012. J. Phys. Soc. Jpn. 81:011005 [Google Scholar]
  49. da Silva Neto E, Aynajian P, Frano A, Comin R, Schierle E. 49.  et al. 2014. Science 343:393–96 [Google Scholar]
  50. Parker CV, Aynajian P, da Silva Neto EH, Pushp A, Ono S. 50.  et al. 2010. Nature 468:677–80 [Google Scholar]
  51. da Silva Neto EH, Parker CV, Aynajian P, Pushp A, Yazdani A. 51.  et al. 2012. Phys. Rev. B 85:104521 [Google Scholar]
  52. He Y, Yin Y, Zech M, Soumyanarayanan A, Yee MM. 52.  et al. 2014. Science 344:608–11 [Google Scholar]
  53. Peli S, Dal Conte S, Comin R, Nembrini N, Banfi F. 53.  et al. 2015. arXiv:1508.0307
  54. Fujita K, Kim CK, Lee I, Lee J, Hamidian MH. 54.  et al. 2014. Science 344:612–16 [Google Scholar]
  55. Fischer O, Kugler M, Maggio-Aprile I, Berthod C, Renner C. 55.  2007. Rev. Mod. Phys. 79:353–419 [Google Scholar]
  56. Fujita K, Hamidian M, Firmo I, Mukhopadhyay S, Kim CK. 56.  et al. 2015. Strongly Correlated Systems A Avella, F Mancini 73–110 Heidelberg: Springer [Google Scholar]
  57. Yazdani A, da Silva Neto EH, Aynajian P. 57.  2016. Annu. Rev. Condens. Matter Phys. 7:11–33 [Google Scholar]
  58. Als-Nielsen J, McMorrow D. 58.  2011. Elements of Modern X-Ray Physics 2nd ed. Wiley [Google Scholar]
  59. Hendrickson WA. 59.  2014. Q. Rev. Biophys. 47:49–93 [Google Scholar]
  60. de Bergevin F, Brunel M. 60.  1972. Phys. Lett. A 39:141–42 [Google Scholar]
  61. Platzman PM, Tzoar N. 61.  1970. Phys. Rev. B 2:3556–59 [Google Scholar]
  62. Brunel M, de Bergevin F. 62.  1981. Acta Cryst. A 37:324–31 [Google Scholar]
  63. Gibbs D, Moncton DE, D'Amico KL, Bohr J, Grier BH. 63.  1985. Phys. Rev. Lett. 55:234–37 [Google Scholar]
  64. Brunel M, de Bergevin F. 64.  1985. J. Phys. Soc. Jpn. 54:4099–102 [Google Scholar]
  65. Gibbs D, Bohr J, Axe JD, Moncton DE, D'Amico KL. 65.  1986. Phys. Rev. B 34:8182–85 [Google Scholar]
  66. Bohr J, Gibbs D, Moncton D, D'Amico KL. 66.  1986. Phys. A: Stat. Mech. Appl. 140:349–58 [Google Scholar]
  67. Goldman AI, Mohanty K, Shirane G, Horn PM, Greene RL. 67.  et al. 1987. Phys. Rev. B 36:5609–12 [Google Scholar]
  68. Blume M. 68.  1985. J. Appl. Phys. 57:3615–18 [Google Scholar]
  69. Blume M, Gibbs D. 69.  1988. Phys. Rev. B 37:1779–89 [Google Scholar]
  70. Hannon JP, Trammell GT, Blume M, Gibbs D. 70.  1988. Phys. Rev. Lett. 61:1245–48 [Google Scholar]
  71. Materlik G, Sparks CJ. 71.  1994. Resonant Anomalous X-Ray Scattering: Theory and Applications Amsterdam: North-Holland [Google Scholar]
  72. Carra P, Thole BT. 72.  1994. Rev. Mod. Phys. 66:1509–15 [Google Scholar]
  73. Abbamonte P, Blumberg G, Rusydi A, Gozar A, Evans PG. 73.  et al. 2004. Nature 431:1078–81 [Google Scholar]
  74. Abbamonte P, Rusydi A, Smadici S, Gu GD, Sawatzky GA, Feng DL. 74.  2005. Nat. Phys. 1:155–58 [Google Scholar]
  75. Mariot JM, Karnatak R, Bonnelle C. 75.  1974. J. Phys. Chem. Solids 35:657–61 [Google Scholar]
  76. Bonnelle C, Karnatak RC, Spector N. 76.  1977. J. Phys. B: Atomic Mol. Phys. 10:795 [Google Scholar]
  77. Karnatak RC, Esteva JM, Connerade JP. 77.  1981. J. Phys. B: Atomic Mol. Phys. 14:4747 [Google Scholar]
  78. van der Laan G, Thole BT, Sawatzky GA, Goedkoop JB, Fuggle JC. 78.  et al. 1986. Phys. Rev. B 34:6529–31 [Google Scholar]
  79. Thole BT, van der Laan G, Fuggle JC, Sawatzky GA, Karnatak RC, Esteva JM. 79.  1985. Phys. Rev. B 32:5107–18 [Google Scholar]
  80. Kuiper P, Kruizinga G, Ghijsen J, Grioni M, Weijs PJW. 80.  et al. 1988. Phys. Rev. B 38:6483–89 [Google Scholar]
  81. de Groot FMF, Grioni M, Fuggle JC, Ghijsen J, Sawatzky GA, Petersen H. 81.  1989. Phys. Rev. B 40:5715–23 [Google Scholar]
  82. Tröger L, Arvanitis D, Rabus H, Wenzel L, Baberschke K. 82.  1990. Phys. Rev. B 41:7297–300 [Google Scholar]
  83. Krol A, Lin CS, Ming ZH, Sher CJ, Kao YH. 83.  et al. 1990. Phys. Rev. B 42:2635–38 [Google Scholar]
  84. Jark W, Stöhr J. 84.  1988. Nucl. Instrum. Methods A 266:654–58 [Google Scholar]
  85. Kao C, Hastings JB, Johnson ED, Siddons DP, Smith GC, Prinz GA. 85.  1990. Phys. Rev. Lett. 65:373–76 [Google Scholar]
  86. Rusydi A. 86.  2006. Resonant soft X-ray scattering and charge density waves in correlated systems PhD Thesis, University of Groningen, The Netherlands [Google Scholar]
  87. Tonnerre JM, Sève L, Raoux D, Soullié G, Rodmacq B, Wolfers P. 87.  1995. Phys. Rev. Lett. 75:740–43 [Google Scholar]
  88. MacKay JF, Teichert C, Savage DE, Lagally MG. 88.  1996. Phys. Rev. Lett. 77:3925–28 [Google Scholar]
  89. Drr HA, Dudzik E, Dhesi SS, Goedkoop JB, van der Laan G. 89.  et al. 1999. Science 284:2166–68 [Google Scholar]
  90. Roper M, van der Laan G, Drr H, Dudzik E, Collins S. 90.  et al. 2001. Nucl. Instrum. Methods A: Accelerators, Spectrometers, Detectors and Associated Equipment 467–68:Part 21101–4 [Google Scholar]
  91. Wilkins SB, Hatton PD, Roper MD, Prabhakaran D, Boothroyd AT. 91.  2003. Phys. Rev. Lett. 90:187201 [Google Scholar]
  92. Wilkins SB, Spencer PD, Hatton PD, Collins SP, Roper MD. 92.  et al. 2003. Phys. Rev. Lett. 91:167205 [Google Scholar]
  93. Grabis J, Nefedov A, Zabel H. 93.  2003. Rev. Sci. Instrum. 74:4048 [Google Scholar]
  94. Staub U, Scagnoli V, Mulders AM, Katsumata K, Honda Z. 94.  et al. 2005. Phys. Rev. B 71:214421 [Google Scholar]
  95. Hawthorn DG, He F, Venema L, Davis H, Achkar AJ. 95.  et al. 2011. Rev. Sci. Instrum. 82:073104 [Google Scholar]
  96. Hill JP, Kao CC, Caliebe WAL, Matsubara M, Kotani A. 96.  et al. 1998. Phys. Rev. Lett. 80:4967–70 [Google Scholar]
  97. Abbamonte P, Burns CA, Isaacs ED, Platzman PM, Miller LL. 97.  et al. 1999. Phys. Rev. Lett. 83:860–63 [Google Scholar]
  98. Hasan MZ, Isaacs ED, Shen ZX, Miller LL, Tsutsui K. 98.  et al. 2000. 2881811–14
  99. Kim YJ, Hill JP, Burns CA, Wakimoto S, Birgeneau RJ. 99.  et al. 2002. Phys. Rev. Lett. 89:177003 [Google Scholar]
  100. Abbamonte P, Venema L, Rusydi A, Sawatzky GA, Logvenov G, Bozovic I. 100.  2002. Science 297:581–84 [Google Scholar]
  101. Nücker N, Fink J, Fuggle JC, Durham PJ, Temmerman WM. 101.  1988. Phys. Rev. B 37:5158–63 [Google Scholar]
  102. Romberg H, Alexander M, Nücker N, Adelmann P, Fink J. 102.  1990. Phys. Rev. B 42:8768–71 [Google Scholar]
  103. Chen CT, Tjeng LH, Kwo J, Kao HL, Rudolf P. 103.  et al. 1992. Phys. Rev. Lett. 68:2543 [Google Scholar]
  104. Fink J, Schierle E, Weschke E, Geck J. 104.  2013. Rep. Progress Phys. 76:056502 [Google Scholar]
  105. Di Matteo S. 105.  2012. J. Phys. D: Appl. Phys. 45:163001 [Google Scholar]
  106. Bruus H, Flensberg K. 106.  2004. Many-Body Quantum Theory in Condensed Matter Physics: An Introduction Oxford, UK: Oxford Univ. Press [Google Scholar]
  107. Schüßler-Langeheine C, Schlappa J, Tanaka A, Hu Z, Chang CF. 107.  et al. 2005. Phys. Rev. Lett. 95:156402 [Google Scholar]
  108. Dhesi SS, Mirone A, De Nadaï C, Ohresser P, Bencok P. 108.  et al. 2004. Phys. Rev. Lett. 92:056403 [Google Scholar]
  109. Thomas KJ, Hill JP, Grenier S, Kim YJ, Abbamonte P. 109.  et al. 2004. Phys. Rev. Lett. 92:237204 [Google Scholar]
  110. Wilkins SB, Dean MPM, Fink J, Hücker M, Geck J. 110.  et al. 2011. Phys. Rev. B 84:195101 [Google Scholar]
  111. Hücker M, v. Zimmermann M, Gu GD, Xu ZJ, Wen JS. 111.  et al. 2011. Phys. Rev. B 83:104506 [Google Scholar]
  112. Fink J, Schierle E, Weschke E, Geck J, Hawthorn D. 112.  et al. 2009. Phys. Rev. B 79:100502 [Google Scholar]
  113. Fink J, Soltwisch V, Geck J, Schierle E, Weschke E, Büchner B. 113.  2011. Phys. Rev. B 83:092503 [Google Scholar]
  114. McElroy K, Hoffman JE, Lee DH, Lang KM, Eisaki H. 114.  et al. 2003. Physica C 388-389:225–26 [Google Scholar]
  115. Hoffman JE, Hudson EW, Lang KM, Eisaki H, Uchida S, Davis JC. 115.  2003. Physica C 388-389:703–4 [Google Scholar]
  116. Howald C, Eisaki H, Kaneko N, Greven M, Kapitulnik A. 116.  2003. Phys. Rev. B 67:014533 [Google Scholar]
  117. McElroy K, Lee DH, Hoffman JE, Lang KM, Lee J. 117.  et al. 2005. Phys. Rev. Lett. 94:197005 [Google Scholar]
  118. da Silva Neto EH, Aynajian P, Parker CV, Yazdani A. 118.  2012. Phys. C: Supercond. 481:153–60 [Google Scholar]
  119. Fujita K, Schmidt AR, Kim EA, Lawler MJ, Lee DH. 119.  et al. 2012. J. Phys. Soc. Jpn. 81:011005 [Google Scholar]
  120. Liang R, Bonn D, Hardy WN. 120.  2000. Phys. C: Supercond. 336:57–62 [Google Scholar]
  121. Doiron-Leyraud N, Proust C, LeBoeuf D, Levallois J, Bonnemaison JB. 121.  et al. 2007. Nature 447:565–68 [Google Scholar]
  122. LeBoeuf D, Doiron-Leyraud N, Levallois J, Daou R, Bonnemaison JB. 122.  et al. 2007. Nature 450:533–36 [Google Scholar]
  123. Hussey NE, Abdel-Jawad M, Carrington A, Mackenzie AP, Balicas L. 123.  2003. Nature 425:814–17 [Google Scholar]
  124. Platé M, Mottershead JDF, Elfimov IS, Peets DC, Liang R. 124.  et al. 2005. Phys. Rev. Lett. 95:077001 [Google Scholar]
  125. Taillefer L. 125.  2009. J. Phys.: Condens. Matter 21:164212 [Google Scholar]
  126. Chang J, Daou R, Proust C, LeBoeuf D, Doiron-Leyraud N. 126.  et al. 2010. Phys. Rev. Lett. 104:057005 [Google Scholar]
  127. Laliberté F, Chang J, Doiron-Leyraud N, Hassinger E, Daou R. 127.  et al. 2011. Nat. Commun. 2:432 [Google Scholar]
  128. Wu T, Mayaffre H, Kramer S, Horvatic M, Berthier C. 128.  et al. 2011. Nature 477:191–94 [Google Scholar]
  129. Hawthorn DG, Shen KM, Geck J, Peets DC, Wadati H. 129.  et al. 2011. Phys. Rev. B 84:075125 [Google Scholar]
  130. Ghiringhelli G, Le Tacon M, Minola M, Blanco-Canosa S, Mazzoli C. 130.  et al. 2012. Science 337:821–25 [Google Scholar]
  131. Gerber S, Jang H, Nojiri H, Matsuzawa S, Yasumura H. 131.  et al. 2015. arXiv:1506.07910
  132. Blanco-Canosa S, Frano A, Schierle E, Porras J, Loew T. 132.  et al. 2014. Phys. Rev. B 90:054513 [Google Scholar]
  133. Chang J, Blackburn E, Holmes AT, Christensen NB, Larsen J. 133.  et al. 2012. Nat. Phys. 8:871–76 [Google Scholar]
  134. Hücker M, v. Zimmermann M, Xu ZJ, Wen JS, Gu GD, Tranquada JM. 134.  2013. Phys. Rev. B 87:014501 [Google Scholar]
  135. Achkar AJ, He F, Sutarto R, Geck J, Zhang H. 135.  et al. 2013. Phys. Rev. Lett. 110:017001 [Google Scholar]
  136. Achkar AJ, Sutarto R, Mao X, He F, Frano A. 136.  et al. 2012. Phys. Rev. Lett. 109:167001 [Google Scholar]
  137. Benjamin D, Abanin D, Abbamonte P, Demler E. 137.  2013. Phys. Rev. Lett. 110:137002 [Google Scholar]
  138. Thampy V, Blanco-Canosa S, Garcia-Fernandez M, Dean MPM, Gu GD. 138.  et al. 2013. Phys. Rev. B 88:024505 [Google Scholar]
  139. Blackburn E, Chang J, Hücker M, Holmes AT, Christensen NB. 139.  et al. 2013. Phys. Rev. Lett. 110:137004 [Google Scholar]
  140. Blanco-Canosa S, Frano A, Loew T, Lu Y, Porras J. 140.  et al. 2013. Phys. Rev. Lett. 110:187001 [Google Scholar]
  141. Hücker M, Christensen NB, Holmes AT, Blackburn E, Forgan EM. 141.  et al. 2014. Phys. Rev. B 90:054514 [Google Scholar]
  142. Achkar AJ, Mao X, McMahon C, Sutarto R, He F. 142.  et al. 2014. Phys. Rev. Lett. 113:107002 [Google Scholar]
  143. Bakr M, Souliou SM, Blanco-Canosa S, Zegkinoglou I, Gretarsson H. 143.  et al. 2013. Phys. Rev. B 88:214517 [Google Scholar]
  144. Le Tacon M, Bosak A, Souliou SM, Dellea G, Loew T. 144.  et al. 2014. Nat. Phys. 10:52–58 [Google Scholar]
  145. Blackburn E, Chang J, Said AH, Leu BM, Liang R. 145.  et al. 2013. Phys. Rev. B 88:054506 [Google Scholar]
  146. Forgan EM, Blackburn E, Holmes AT, Briffa AKR, Chang J. 146.  et al. 2015. Nat. Comm. 6:10064 [Google Scholar]
  147. Wu T, Mayaffre H, Kramer S, Horvatic M, Berthier C. 147.  et al. 2013. Nat. Comm. 4:2113 [Google Scholar]
  148. LeBoeuf D, Kramer S, Hardy WN, Liang R, Bonn DA, Proust C. 148.  2013. Nat. Phys. 9:79–83 [Google Scholar]
  149. Wu T, Mayaffre H, Kramer S, Horvatic M, Berthier C. 149.  et al. 2015. Nat. Comm. 6:6438 [Google Scholar]
  150. Wu HH, Buchholz M, Trabant C, Chang C, Komarek A. 150.  et al. 2012. Nat. Comm. 3:1023 [Google Scholar]
  151. Rosen J, Comin R, Levy G, Fournier D, Zhu ZH. 151.  et al. 2013. Nat. Commun. 4:1977 [Google Scholar]
  152. Comin R, Frano A, Yee M, Yoshida Y, Eisaki H. 152.  et al. 2014. Science 343:390–92 [Google Scholar]
  153. Hashimoto M, Ghiringhelli G, Lee WS, Dellea G, Amorese A. 153.  et al. 2014. Phys. Rev. B 89:220511 [Google Scholar]
  154. Kawasaki S, Lin C, Kuhns PL, Reyes AP, Zheng G-q. 154.  2010. Phys. Rev. Lett. 105:137002 [Google Scholar]
  155. Shen KM, Ronning F, Lu DH, Baumberger F, Ingle NJC. 155.  et al. 2005. Science 307:901–4 [Google Scholar]
  156. Efetov KB, Meier H, Pépin C. 156.  2013. Nat. Phys. 9:442 [Google Scholar]
  157. Sachdev S, La Placa R. 157.  2013. Phys. Rev. Lett. 111:027202 [Google Scholar]
  158. Meier H, Einenkel M, Pépin C, Efetov KB. 158.  2013. Phys. Rev. B 88:020506 [Google Scholar]
  159. Wang Y, Chubukov A. 159.  2014. Phys. Rev. B 90:035149 [Google Scholar]
  160. Lee PA. 160.  2014. Phys. Rev. X 4:031017 [Google Scholar]
  161. Bonnoit C, Gardner D, Chisnell R, Said A, Okada Y. 161.  et al. 2012. arXiv:1202.4994
  162. Croft TP, Lester C, Senn MS, Bombardi A, Hayden SM. 162.  2014. Phys. Rev. B 89:224513 [Google Scholar]
  163. Christensen NB, Chang J, Larsen J, Fujita M, Oda M. 163.  et al. 2014. arXiv:1404.3192
  164. Thampy V, Dean MPM, Christensen NB, Steinke L, Islam Z. 164.  et al. 2014. Phys. Rev. B 90:100510 [Google Scholar]
  165. Doiron-Leyraud N, Lepault S, Cyr-Choinière O, Vignolle B, Grissonnanche G. 165.  et al. 2013. Phys. Rev. X 3:021019 [Google Scholar]
  166. Barisic N, Badoux S, Chan MK, Dorow C, Tabis W. 166.  et al. 2013. Nat. Phys. 9:761–64 [Google Scholar]
  167. Tabis W, Li Y, Le Tacon M, Braicovich L, Kreyssig A. 167.  et al. 2014. Nat. Comm. 5:5875 [Google Scholar]
  168. Campi G, Bianconi A, Poccia N, Bianconi G, Barba L. 168.  et al. 2015. Nature 525:359–62 [Google Scholar]
  169. Yamada K, Lee CH, Kurahashi K, Wada J, Wakimoto S. 169.  et al. 1998. Phys. Rev. B 57:6165–72 [Google Scholar]
  170. Achkar A. 170.  2015. Charge density wave order in cuprate superconductors studied by resonant soft X-ray scattering PhD Thesis. University of Waterloo, Canada [Google Scholar]
  171. Sebastian SE, Harrison N, Lonzarich GG. 171.  2012. Rep. Prog. Phys. 75:102501 [Google Scholar]
  172. Ramshaw BJ, Sebastian SE, McDonald RD, Day J, Tan BS. 172.  et al. 2015. Science 348:317–20 [Google Scholar]
  173. Chubukov AV, Sachdev S, Ye J. 173.  1994. Phys. Rev. B 49:11919–61 [Google Scholar]
  174. Sachdev S. 174.  2000. Science 288:475–80 [Google Scholar]
  175. d'Astuto M, Mang PK, Giura P, Shukla A, Ghigna P. 175.  et al. 2002. Phys. Rev. Lett. 88:167002 [Google Scholar]
  176. Helm T, Kartsovnik MV, Bartkowiak M, Bittner N, Lambacher M. 176.  et al. 2009. Phys. Rev. Lett. 103:157002 [Google Scholar]
  177. Hinton JP, Koralek JD, Yu G, Motoyama EM, Lu YM. 177.  et al. 2013. Phys. Rev. Lett. 110:217002 [Google Scholar]
  178. Lee WS, Lee JJ, Nowadnick EA, Gerber S, Tabis W. 178.  et al. 2014. Nat. Phys. 10:883–89 [Google Scholar]
  179. Ishii K, Fujita M, Sasaki T, Minola M, Dellea G. 179.  et al. 2014. Nat. Comm. 5:3714 [Google Scholar]
  180. da Silva Neto EH, Comin R, He F, Sutarto R, Jiang Y. 180.  et al. 2015. Science 347:282–85 [Google Scholar]
  181. Motoyama EM, Yu G, Vishik IM, Vajk OP, Mang PK, Greven M. 181.  2007. Nature 445:186 [Google Scholar]
  182. Metlitski MA, Sachdev S. 182.  2010. Phys. Rev. B 82:075128 [Google Scholar]
  183. He Y, Scherpelz P, Levin K. 183.  2013. Phys. Rev. B 88:064516 [Google Scholar]
  184. Bulut S, Atkinson WA, Kampf AP. 184.  2013. Phys. Rev. B 88:155132 [Google Scholar]
  185. Nie L, Tarjus G, Kivelson SA. 185.  2014. PNAS 111:7980–85 [Google Scholar]
  186. Dalla Torre EG, He Y, Benjamin D, Demler E. 186.  2015. N. J. Phys. 111:022001 [Google Scholar]
  187. Melikyan A, Norman MR. 187.  2014. Phys. Rev. B 89:024507 [Google Scholar]
  188. Comin R, Sutarto R, He F, da Silva Neto EH, Chauviere L. 188.  et al. 2015. Nat. Mater. 14:796–800 [Google Scholar]
  189. Achkar AJ, He F, Sutarto R, McMahon C, Zwiebler M. 189.  et al. 2014. arXiv:1409.6787
  190. Vojta M, Rösch O. 190.  2008. Phys. Rev. B 77:094504 [Google Scholar]
  191. Fujita K, Hamidian MH, Edkins SD, Kim CK, Kohsaka Y. 191.  et al. 2014. PNAS 111:E3026–32 [Google Scholar]
  192. Kivelson SA, Fradkin E, Emery VJ. 192.  1998. Nature 393:550–53 [Google Scholar]
  193. Norman M. 193.  2004. Science 303:1985–86 [Google Scholar]
  194. Del Maestro A, Rosenow B, Sachdev S. 194.  2006. Phys. Rev. B 74:024520 [Google Scholar]
  195. Robertson JA, Kivelson SA, Fradkin E, Fang AC, Kapitulnik A. 195.  2006. Phys. Rev. B 74:134507 [Google Scholar]
  196. Vojta M. 196.  2012. Phys. C: Supercond. 481:178–88 [Google Scholar]
  197. Hamidian MH, Edkins SD, Kim CK, Davis JC, Mackenzie AP. 197.  et al. 2015. arXiv:1507.07865
  198. Comin R, Sutarto R, da Silva Neto EH, Chauviere L, Liang R. 198.  et al. 2015. Science 347:1335–39 [Google Scholar]
  199. Daou R, Chang J, LeBoeuf D, Cyr-Choiniere O, Laliberte F. 199.  et al. 2010. Nature 463:519–22 [Google Scholar]
  200. Cyr-Choinière O, Grissonnanche G, Badoux S, Day J, Bonn DA. 200.  et al. 2015. arXiv:1504.06972
  201. Grüner G. 201.  1994. Density Waves in Solids Boulder, CO: Westview [Google Scholar]
  202. Reznik D, Pintschovius L, Ito M, Iikubo S, Sato M. 202.  et al. 2006. Nature 440:1170–73 [Google Scholar]
  203. Reznik D, Pintschovius L, Fujita M, Yamada K, Gu G, Tranquada J. 203.  2007. J. Low Temp. Phys. 147:353–64 [Google Scholar]
  204. Reznik D, Pintschovius L, Tranquada JM, Arai M, Endoh Y. 204.  et al. 2008. Phys. Rev. B 78:094507 [Google Scholar]
  205. Reznik D. 205.  2010. Adv. Condens. Matter Phys. 2010:523549 [Google Scholar]
  206. Raichle M, Reznik D, Lamago D, Heid R, Li Y. 206.  et al. 2011. Phys. Rev. Lett. 107:177004 [Google Scholar]
  207. Reznik D. 207.  2012. Phys. C: Supercond. 481:75–92 [Google Scholar]
  208. Liu YH, Konik RM, Rice TM, Zhang FC. 208.  2015. arXiv:1506.01258
  209. Först M, Frano A, Kaiser S, Mankowsky R, Hunt CR. 209.  et al. 2014. Phys. Rev. B 90:184514 [Google Scholar]
  210. Orenstein J. 210.  2012. Phys. Today 65:44–50 [Google Scholar]
  211. Dal Conte S, Giannetti C, Coslovich G, Cilento F, Bossini D. 211.  et al. 2012. Science 335:1600–3 [Google Scholar]
  212. Torchinsky DH, Mahmood F, Bollinger AT, Ivan Bozovic I, Gedik N. 212.  2013. Nat. Mater. 12:387–91 [Google Scholar]
  213. Hinton JP, Koralek JD, Lu YM, Vishwanath A, Orenstein J. 213.  et al. 2013. Phys. Rev. B 88:060508 [Google Scholar]
  214. Fausti D, Tobey RI, Dean N, Kaiser S, Dienst A. 214.  et al. 2011. Science 331:189–91 [Google Scholar]
  215. Rose-Petruck C, Jimenez R, Guo T, Cavalleri A, Siders CW. 215.  et al. 1999. Nature 398:310–12 [Google Scholar]
  216. Först M, Manzoni C, Kaiser S, Tomioka Y, Tokura Y. 216.  et al. 2011. Nat. Phys. 7:854–56 [Google Scholar]
  217. Mankowsky R, Subedi A, Först M, Mariager SO, Chollet M. 217.  et al. 2014. Nature 516:71–73 [Google Scholar]
  218. Först M, Tobey RI, Wall S, Bromberger H, Khanna V. 218.  et al. 2011. Phys. Rev. B 84:241104(R) [Google Scholar]
  219. Caviglia AD, Först M, Scherwitzl R, Khanna V, Bromberger H. 219.  et al. 2013. Phys. Rev. B 88:220401 [Google Scholar]
  220. Kaiser S, Hunt CR, Nicoletti D, Hu W, Gierz I. 220.  et al. 2014. Phys. Rev. B 89:184516 [Google Scholar]
  221. Hu W, Kaiser S, Nicoletti D, Hunt C, Gierz I, Hoffmann MC. 221.  et al. 2014. Nat. Mater. 13:705 [Google Scholar]
  222. Först M, Tobey RI, Bromberger H, Wilkins SB, Khanna V. 222.  et al. 2014. Phys. Rev. Lett. 112:157002 [Google Scholar]
  223. Hossain MA, Mottershead JDF, Fournier D, Bostwick A, McChesney JL. 223.  et al. 2008. Nat. Phys. 4:527–31 [Google Scholar]
  224. Fournier D, Levy G, Pennec Y, McChesney JL, Bostwick A. 224.  et al. 2010. Nat. Phys. 6:905–11 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031115-011401
Loading
/content/journals/10.1146/annurev-conmatphys-031115-011401
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error