1932

Abstract

Collisions between particles suspended in a fluid play an important role in many physical processes. As an example, collisions of microscopic water droplets in clouds are a necessary step in the production of macroscopic raindrops. Collisions of dust grains are also conjectured to be important for planet formation in the gas surrounding young stars and to play a role in the dynamics of sand storms. In these processes, collisions are favored by fast turbulent motions. Here we review recent advances in the understanding of collisional aggregation due to turbulence. We discuss the role of fractal clustering of particles and caustic singularities of their velocities. We also discuss limitations of the Smoluchowski equation for modeling such processes. These advances lead to a semiquantitative understanding on the influence of turbulence on collision rates and point to deficiencies in the current understanding of rainfall and planet formation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031115-011538
2016-03-10
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/7/1/annurev-conmatphys-031115-011538.html?itemId=/content/journals/10.1146/annurev-conmatphys-031115-011538&mimeType=html&fmt=ahah

Literature Cited

  1. Balachander S, Eaton JK. 1.  2010. Annu. Rev. Fluid Mech. 42:111–33 [Google Scholar]
  2. Pruppacher HR, Klett JD. 2.  2005. Microphysics of Clouds and Precipitations Dordrecht: Kluwer [Google Scholar]
  3. Shaw RA. 3.  2003. Annu. Rev. Fluid Mech. 35:183–227 [Google Scholar]
  4. Goldstein RE. 4.  2015. Annu. Rev. Fluid Mech. 47:343–75 [Google Scholar]
  5. Trenberth KE, Fasullo JT, Kiehl J. 5.  2009. Bull. Am. Meteorol. Soc. 90:311–23 [Google Scholar]
  6. Grabowski WW, Wang LP. 6.  2013. Annu. Rev. Fluid Mech. 45:293–324 [Google Scholar]
  7. Safranov VS. 7.  1969. Evolution of the protoplanetary cloud and formation of earth and planets NASA Tech. Transl. F-677, Moscow, Nauka [Google Scholar]
  8. Saffman PG, Turner JS. 8.  1956. J. Fluid Mech. 1:16–30 [Google Scholar]
  9. Völk HJ, Jones FC, Morfill GE, Röser S. 9.  1980. Astron. Atrophys. 85:316–25 [Google Scholar]
  10. Taylor GI. 10.  1922. Proc. Lond. Math. Soc. Ser. II 20:196–212 [Google Scholar]
  11. Elghobashi S. 11.  1994. Appl. Sci. Res. 52:309–29 [Google Scholar]
  12. Smoluchowski M. 12.  1917. Z. Phys. Chem. 92:129–68 [Google Scholar]
  13. Krapivsy PL, Redner S, Ben-Naim E. 13.  2010. A Kinetic View of Statistical Physics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  14. Wilkinson M, Mehlig B. 14.  2005. Europhys. Lett. 71:186–92 [Google Scholar]
  15. Bodenschatz E, Malinowski SP, Shaw RA, Stratmann F. 15.  2010. Science 327:970–71 [Google Scholar]
  16. Devenish BJ, Bartello P, Bringuier JL, Collins LR, Grabowski WW. 16.  et al. 2012. Q. J. R. Meteorol. Soc. 138:1401–29 [Google Scholar]
  17. Maxey MR, Riley JJ. 17.  1983. Phys. Fluids 26:883–89 [Google Scholar]
  18. Gatignol R. 18.  1983. J. Mech. Theor. Appl. 1:143–60 [Google Scholar]
  19. Elghobashi S, Truesdell GC. 19.  1992. J. Fluid Mech. 242:655–700 [Google Scholar]
  20. Daitche A, Tél T. 20.  2011. Phys. Rev. Lett. 107:244501 [Google Scholar]
  21. Rybczynski W. 21.  1911. Bull. Acad. Sci. Crac. A:40–46 [Google Scholar]
  22. Hadamard JS. 22.  1911. C.R. Acad. Sci. 152:1735–38 [Google Scholar]
  23. Epstein PS. 23.  1924. Phys. Rev. 23:710–33 [Google Scholar]
  24. Zimmermann R, Gasteuil Y, Bourgoin M, Volk R, Pumir A, Pinton JF. 24.  2011. Phys. Rev. Lett. 106:154501 [Google Scholar]
  25. Klein S, Gibert M, Bérut A, Bodenschatz E. 25.  2013. Meas. Sci. Technol. 24:024006 [Google Scholar]
  26. Naso A, Prosperetti A. 26.  2010. New J. Phys. 12:33040 [Google Scholar]
  27. Lucci F, Ferrante A, Elghobashi S. 27.  2010. J. Fluid Mech. 650:5–55 [Google Scholar]
  28. Homann H, Bec J, Grauer R. 28.  2013. J. Fluid Mech. 721:155–79 [Google Scholar]
  29. Boltzmann L. 29.  1995. Lectures on Gas Theory New York: Dover [Google Scholar]
  30. Sundaram S, Collins LR. 30.  1997. J. Fluid Mech. 335:75–109 [Google Scholar]
  31. Wang LP, Wexler AS, Zhou Y. 31.  2000. J. Fluid Mech. 415:117–53 [Google Scholar]
  32. Mason BJ. 32.  1957. The Physics of Clouds Oxford, UK: Oxford Univ. Press [Google Scholar]
  33. Landau LD, Lifshitz EM. 33.  1980. Statistical Physics Oxford, UK: Pergamon [Google Scholar]
  34. Falkovich G, Sreenivasan KR. 34.  2006. Phys. Today 59:443 [Google Scholar]
  35. Kolmogorov AN. 35.  1941. Dokl. Akad. Nauk SSSR. 30:4299–303 [Google Scholar]
  36. Kolmogorov AN. 36.  1941. Dokl. Akad. Nauk SSSR. 32:116–18 [Google Scholar]
  37. Brunk BK, Koch DL. 37.  1998. J. Fluid Mech. 364:81–113 [Google Scholar]
  38. Pumir A, Wilkinson M. 38.  2011. New J. Phys. 13:093030 [Google Scholar]
  39. La Porta A, Voth GA, Crawford AM, Alexander J, Bodenschatz E. 39.  2001. Nature 409:1017–19 [Google Scholar]
  40. Toschi F, Bodenschatz E. 40.  2009. Annu. Rev. Fluid Mech. 41:375–404 [Google Scholar]
  41. Orszag SA, Patterson GS. 41.  1972. Phys. Rev. Lett. 28:76–79 [Google Scholar]
  42. Ishihara T, Gotoh T, Kaneda Y. 42.  2009. Annu. Rev. Fluid Mech. 41:165–80 [Google Scholar]
  43. Hackl JF, Yeung PK, Sawford BL. 43.  2011. Phys. Fluids 23:065103 [Google Scholar]
  44. Yeung PK, Pope SB. 44.  1988. J. Comput. Phys. 79:373–416 [Google Scholar]
  45. Sundaram S, Collins LR. 45.  1996. J. Comput. Phys. 124:337–50 [Google Scholar]
  46. Good G, Ireland P, Bewley G, Bodenschatz E, Collins L, Warhaft Z. 46.  2014. J. Fluid Mech. 759:R3 [Google Scholar]
  47. Maxey MR. 47.  1987. J. Fluid Mech. 174:441–65 [Google Scholar]
  48. Wang LP, Maxey MR. 48.  1993. J. Fluid Mech. 256:27–68 [Google Scholar]
  49. Balkovsky E, Falkovich G, Fouxon A. 49.  2001. Phys. Rev. Lett. 86:2790–3 [Google Scholar]
  50. Falkovich G, Fouxon A, Stepanov MG. 50.  2002. Nature 419:151–54 [Google Scholar]
  51. Falkovich G, Pumir A. 51.  2004. Phys. Fluids 16:L47 [Google Scholar]
  52. Grassberger P, Procaccia I. 52.  1983. Phys. D 9:189–208 [Google Scholar]
  53. Ott E. 53.  2002. Chaos in Dynamical Systems Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  54. Sommerer JC, Ott E. 54.  1993. Science 259:335–39 [Google Scholar]
  55. Bec J. 55.  2003. Phys. Fluids 15:L81–84 [Google Scholar]
  56. Bec J, Biferale L, Cecini M, Lanotte A, Musacchio S, Toschi F. 56.  2007. Phys. Rev. Lett. 98:084502 [Google Scholar]
  57. Wilkinson M, Mehlig B, Östlund S, Duncan KP. 57.  2007. Phys. Fluids 19:113303 [Google Scholar]
  58. Wilkinson M, Mehlig B, Gustavsson K. 58.  2010. Europhys. Lett. 89:50002 [Google Scholar]
  59. Kostinski AB, Shaw RA. 59.  2001. J. Fluid Mech. 434:389–98 [Google Scholar]
  60. Monchaux R, Bourgoin M, Cartellier A. 60.  2010. Phys. Fluids 22:103304 [Google Scholar]
  61. Crisanti A, Falcioni M, Provenzale A, Tanga P, Vulpiani A. 61.  1992. Phys. Fluids A 4:1806–20 [Google Scholar]
  62. IJzermans RHA, Reeks MW, Meneguz E, Picciotto M, Soldati A. 62.  2009. Phys. Rev. E 80:015302 [Google Scholar]
  63. Ijzermans RHA, Meneguz E, Reeks MW. 63.  2010. J. Fluid Mech. 653:99–136 [Google Scholar]
  64. Gustavsson K, Meneguz E, Reeks M, Mehlig B. 64.  2012. New J. Phys. 14:115017 [Google Scholar]
  65. Saunders PT. 65.  1980. An Introduction to Catastrophe Theory. Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  66. Wilkinson M, Mehlig B, Bezuglyy V. 66.  2006. Phys. Rev. Lett. 97:048501 [Google Scholar]
  67. Falkovich G, Pumir A. 67.  2007. J. Atmos. Sci. 64:4497–505 [Google Scholar]
  68. Bewley GP, Saw EW, Bodenschatz E. 68.  2013. New J. Phys. 15:083051 [Google Scholar]
  69. Ducasse L, Pumir A. 69.  2009. Phys. Rev. E 80:066312 [Google Scholar]
  70. Abrahamson J. 70.  1975. Chem. Eng. Sci. 30:1371–79 [Google Scholar]
  71. Mehlig B, Uski V, Wilkinson M. 71.  2007. Phys. Fluids 19:098107 [Google Scholar]
  72. Voßkuhle M, Pumir A, Lévêque E, Wilkinson M. 72.  2014. J. Fluid Mech. 749:841–52 [Google Scholar]
  73. Gustavsson K, Mehlig B. 73.  2011. Phys. Rev. E 84:045304 [Google Scholar]
  74. Zaichik LI, Simonin O, Alipchenkov VM. 74.  2003. Phys. Fluids 15:2995 [Google Scholar]
  75. Zaichik LI, Simonin O, Alipchenkov VM. 75.  2010. Intl. J. Heat Mass Transf. 53:1613–20 [Google Scholar]
  76. Gustavsson K, Mehlig B, Wilkinson M, Uski V. 76.  2008. Phys. Rev. Lett. 101:74503 [Google Scholar]
  77. Pan L, Padoan P. 77.  2013. Astrophys. J. 776:12 [Google Scholar]
  78. Voßkuhle M, Leveque E, Wilkinson M, Pumir A. 78.  2013. Phys. Rev. E 88:063008 [Google Scholar]
  79. Voßkuhle M, Pumir A, Lévêque E, Wilkinson M. 79.  2015. J. Turbul. 16:15–25 [Google Scholar]
  80. Bec J, Biferale L, Cencini M, Lanotte AS, Toschi F. 80.  2010. J. Fluid Mech. 646:527–36 [Google Scholar]
  81. Rosa B, Parishani H, Ayala O, Grabowski WW, Wang LP. 81.  2013. New J. Phys. 15:045032 [Google Scholar]
  82. Gustavsson K, Mehlig B. 82.  2013. J. Turbul. 15:34–69 [Google Scholar]
  83. Chun J, Koch DL. 83.  2005. Phys. Fluids 17:027102 [Google Scholar]
  84. Derevyanko S, Falkovich G, Tuitsyn S. 84.  2008. New J. Phys. 10:075019 [Google Scholar]
  85. Aldous DJ. 85.  1999. Bernoulli 5:3–48 [Google Scholar]
  86. van Dongen PGJ. 86.  1987. J. Phys. A: Math. Gen. 20:71889 [Google Scholar]
  87. Carr J, da Costa FP. 87.  1992. Z. Angew. Math. Phys. 43:974–83 [Google Scholar]
  88. Ball RC, Connaughton C, Stein THM, Zaboronski O. 88.  2011. Phys. Rev. E 84:011111 [Google Scholar]
  89. Villermaux E. 89.  2009. Nat. Phys. 5:697–702 [Google Scholar]
  90. Rogers RR, Yau MK. 90.  1982. A Short Course in Cloud Physics Burlington, MA: Butterworth-Heinemann298 [Google Scholar]
  91. Kostinski AB, Shaw RA. 91.  2005. Bull. Am. Meterol. Soc. 86:235–44 [Google Scholar]
  92. Touchette H. 92.  2009. Phys. Rep. 478:1–69 [Google Scholar]
  93. Wilkinson M. 93.  2016. Phys. Rev. Lett 116:018501 [Google Scholar]
  94. Wilkinson M. 94.  2014. Europhys. Lett. 108:49001 [Google Scholar]
  95. Armitage PJ. 95.  2010. Astrophysics of Planet Formation Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  96. Shakura NI, Sunyaev RA. 96.  1973. Astron. Astrophys. 24:337 [Google Scholar]
  97. Goldreich P, Ward WR. 97.  1973. Astrophys. J. 183:1051–62 [Google Scholar]
  98. Wilkinson M, Mehlig B, Uski V. 98.  2008. Astrophys. J. Suppl. 176:484–96 [Google Scholar]
  99. Blum J, Wurm G. 99.  2008. Annu. Rev. Astron. Astrophys. 46:21–56 [Google Scholar]
  100. Weidenschilling SJ. 100.  1977. Mon. Not. R. Astron. Soc. 180:57–70 [Google Scholar]
  101. Takeuchi T, Lin DC. 101.  2002. Astrophys. J. 581:1344–55 [Google Scholar]
  102. Youdin AN, Goodman J. 102.  2005. Astrophys. J. 620:459–69 [Google Scholar]
  103. Johansen A, Youdin AN, Lithwick Y. 103.  2012. Astron. Astrophys. 537:A125 [Google Scholar]
  104. Winn JN, Fabrycky DC. 104.  2015. Annu. Rev. Astron. Astrophys. 53:409–47 [Google Scholar]
  105. Zakamska NL, Tremaine S. 105.  2004. Astron. J. 128:869–77 [Google Scholar]
  106. Ford EB, Rasio FA, Yu K. 106.  2003. In Scientific Frontiers in Research on Extrasolar Planets D Deming, S Seager ASP Conf. Ser. 294181 San Francisco: ASP [Google Scholar]
  107. Ribas I, Miralda-Escudé J. 107.  2007. Astron. Astrophys. 464:779–85 [Google Scholar]
  108. Wilkinson M, Mehlig B. 108.  2012. Let's Face Chaos Through Nonlinear Dynamics: Proc. 8th Int. Summer Sch./Conf., ed. M Robnik, VG Romanovski AIP Conf. Proc. 1468:375–88 [Google Scholar]
  109. Siebert H, Shaw RA, Ditas J, Schmeissner T, Malinowski SP. 109.  et al. 2015. Atmos. Meas. Tech. Discuss. 8:569–97 [Google Scholar]
  110. Wilkinson M, Mehlig B. 110.  2003. Phys. Rev. E 68:040101(R) [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031115-011538
Loading
/content/journals/10.1146/annurev-conmatphys-031115-011538
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error