1932

Abstract

The thermally activated creep motion of an elastic interface weakly driven on a disordered landscape is one of the best examples of glassy universal dynamics. Its understanding has evolved over the past 30 years thanks to a fruitful interplay among elegant scaling arguments, sophisticated analytical calculations, efficient optimization algorithms, and creative experiments. In this article, starting from the pioneer arguments, we review the main theoretical and experimental results that lead to the current physical picture of the creep regime. In particular, we discuss recent works unveiling the collective nature of such ultraslow motion in terms of elementary activated events. We show that these events control the mean velocity of the interface and cluster into “creep avalanches” statistically similar to the deterministic avalanches observed at the depinning critical threshold. The associated spatiotemporal patterns of activated events have been recently observed in experiments with magnetic domain walls. The emergent physical picture is expected to be relevant for a large family of disordered systems presenting thermally activated dynamics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031119-050725
2021-03-10
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/12/1/annurev-conmatphys-031119-050725.html?itemId=/content/journals/10.1146/annurev-conmatphys-031119-050725&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Barrat JL, Feigelman M, Kurchan J, Dalibard J 2003. Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter. Les Houches Session LXXVII July 1–26, 2002 Berlin: Springer
    [Google Scholar]
  2. 2. 
    Berthier L, Biroli G. 2011. Rev. Mod. Phys. 83:587–645
    [Google Scholar]
  3. 3. 
    Anderson PW. 1958. Phys. Rev. 109:1492–505
    [Google Scholar]
  4. 4. 
    Evers F, Mirlin AD. 2008. Rev. Mod. Phys. 80:1355–417
    [Google Scholar]
  5. 5. 
    Sethna JP, Dahmen KA, Myers CR 2001. Nature 410:242–50
    [Google Scholar]
  6. 6. 
    Baret JC, Vandembroucq D, Roux S 2002. Phys. Rev. Lett. 89:195506
    [Google Scholar]
  7. 7. 
    Lin J, Lerner E, Rosso A, Wyart M 2014. PNAS 111:14382–87
    [Google Scholar]
  8. 8. 
    Nicolas A, Ferrero EE, Martens K, Barrat JL 2018. Rev. Mod. Phys. 90:045006
    [Google Scholar]
  9. 9. 
    Bonamy D, Bouchaud E. 2011. Phys. Rep. 498:1–44
    [Google Scholar]
  10. 10. 
    Schmittbuhl J, Roux S, Vilotte JP, Måløy KJ 1995. Phys. Rev. Lett. 74:1787–90
    [Google Scholar]
  11. 11. 
    Bonamy D, Santucci S, Ponson L 2008. Phys. Rev. Lett. 101:045501
    [Google Scholar]
  12. 12. 
    Ferré J, Metaxas PJ, Mougin A, Jamet JP, Gorchon J, Jeudy V 2013. C. R. Phys. 14:651–66
    [Google Scholar]
  13. 13. 
    Zapperi S, Cizeau P, Durin G, Stanley HE 1998. Phys. Rev. B 58:6353–66
    [Google Scholar]
  14. 14. 
    Paruch P, Guyonnet J. 2013. C. R. Phys. 14:667–84
    [Google Scholar]
  15. 15. 
    Kleemann W. 2007. Annu. Rev. Mater. Res. 37:415–48
    [Google Scholar]
  16. 16. 
    Moulinet S, Rosso A, Krauth W, Rolley E 2004. Phys. Rev. E 69:035103
    [Google Scholar]
  17. 17. 
    Le Doussal P, Wiese KJ, Moulinet S, Rolley E 2009. Europhys. Lett. 87:56001
    [Google Scholar]
  18. 18. 
    Dhar D. 1999. Phys. A: Stat. Mech. Appl. 263:4–25
    [Google Scholar]
  19. 19. 
    Henkel M, Hinrichsen H, Lübeck S, Pleimling M 2008. Non-Equilibrium Phase Transitions. Vol. 1. Absorbing Phase Transitions Dordrecht, Neth: Springer Sci. Bus. Media
    [Google Scholar]
  20. 20. 
    Narayan O, Fisher DS. 1993. Phys. Rev. B 48:7030–42
    [Google Scholar]
  21. 21. 
    Nattermann T, Stepanow S, Tang L-H, Leschhorn H 1992. J. Phys. II France 2:1483–88
    [Google Scholar]
  22. 22. 
    Fisher DS. 1998. Phys. Rep. 301:113–50
    [Google Scholar]
  23. 23. 
    Müller M, Gorokhov DA, Blatter G 2001. Phys. Rev. B 63:184305
    [Google Scholar]
  24. 24. 
    Agoritsas E, Lecomte V, Giamarchi T 2012. Phys. B: Condens. Matter. 407:1725–33
    [Google Scholar]
  25. 25. 
    Ferrero EE, Bustingorry S, Kolton AB, Rosso A 2013. C. R. Phys. 14:641–50
    [Google Scholar]
  26. 26. 
    Kardar M. 1998. Phys. Rep. 301:85–112
    [Google Scholar]
  27. 27. 
    Rosso A, Le Doussal P, Wiese KJ 2009. Phys. Rev. B 80:144204
    [Google Scholar]
  28. 28. 
    Kolton AB, Doussal PL, Wiese KJ 2019. Europhys. Lett. 127:46001
    [Google Scholar]
  29. 29. 
    Papanikolaou S, Bohn F, Sommer RL, Durin G, Zapperi S, Sethna JP 2011. Nat. Phys. 7:316–20
    [Google Scholar]
  30. 30. 
    Laurson L, Illa X, Santucci S, Tallakstad KT, Måløy KJ, Alava MJ 2013. Nat. Commun. 4:2927
    [Google Scholar]
  31. 31. 
    Scholz CH. 2002. The Mechanics of Earthquakes and Faulting Cambridge, UK: Cambridge Univ. Press. , 2nd. ed.
    [Google Scholar]
  32. 32. 
    Jagla E, Kolton A. 2010. J. Geophys. Res.: Solid Earth 115:B05312
    [Google Scholar]
  33. 33. 
    Jagla EA, Landes FP, Rosso A 2014. Phys. Rev. Lett. 112:174301
    [Google Scholar]
  34. 34. 
    Janićević S, Laurson L, Måløy KJ, Santucci S, Alava MJ 2016. Phys. Rev. Lett. 117:230601
    [Google Scholar]
  35. 35. 
    Kolton AB, Rosso A, Giamarchi T, Krauth W 2006. Phys. Rev. Lett. 97:057001
    [Google Scholar]
  36. 36. 
    Fedorenko AA, Le Doussal P, Wiese KJ 2006. Phys. Rev. E 74:061109
    [Google Scholar]
  37. 37. 
    Ferrero EE, Bustingorry S, Kolton AB 2013. Phys. Rev. E 87:032122
    [Google Scholar]
  38. 38. 
    Narayan O, Fisher DS. 1992. Phys. Rev. B 46:11520–49
    [Google Scholar]
  39. 39. 
    Le Doussal P, Wiese KJ, Chauve P 2002. Phys. Rev. B 66:174201
    [Google Scholar]
  40. 40. 
    Fisher DS. 1985. Phys. Rev. B 31:1396–427
    [Google Scholar]
  41. 41. 
    Alessandro B, Beatrice C, Bertotti G, Montorsi A 1990. J. Appl. Phys. 68:2908–15
    [Google Scholar]
  42. 42. 
    Doussal PL, Vinokur VM. 1995. Phys. C: Supercondens. 254:63–68
    [Google Scholar]
  43. 43. 
    Joanny J, De Gennes PG 1984. J. Chem. Phys. 81:552–62
    [Google Scholar]
  44. 44. 
    Gao H, Rice JR. 1989. J. Appl. Mech. 56:828–36
    [Google Scholar]
  45. 45. 
    Kolton AB, Jagla EA. 2018. Phys. Rev. E 98:042111
    [Google Scholar]
  46. 46. 
    Chauve P, Giamarchi T, Le Doussal P 2000. Phys. Rev. B 62:6241–67
    [Google Scholar]
  47. 47. 
    Le Doussal P, Wiese KJ 2013. Phys. Rev. E 88:022106
    [Google Scholar]
  48. 48. 
    Le Priol C, Chopin J, Le Doussal P, Ponson L, Rosso A 2020. Phys. Rev. Lett. 124:065501
    [Google Scholar]
  49. 49. 
    Rosso A, Krauth W. 2002. Phys. Rev. E 65:025101
    [Google Scholar]
  50. 50. 
    Rosso A, Hartmann AK, Krauth W 2003. Phys. Rev. E 67:021602
    [Google Scholar]
  51. 51. 
    Ramanathan S, Fisher DS. 1998. Phys. Rev. B 58:6026–46
    [Google Scholar]
  52. 52. 
    Leschhorn H. 1993. Phys. A: Stat. Mech. Appl. 195:324–35
    [Google Scholar]
  53. 53. 
    Kardar M, Parisi G, Zhang YC 1986. Phys. Rev. Lett. 56:889–92
    [Google Scholar]
  54. 54. 
    Middleton AA. 1995. Phys. Rev. E 52:R3337–40
    [Google Scholar]
  55. 55. 
    Zoia A, Rosso A, Kardar M 2007. Phys. Rev. E 76:021116
    [Google Scholar]
  56. 56. 
    Tang LH, Kardar M, Dhar D 1995. Phys. Rev. Lett. 74:920–23
    [Google Scholar]
  57. 57. 
    Rosso A, Krauth W. 2001. Phys. Rev. Lett. 87:187002
    [Google Scholar]
  58. 58. 
    Buldyrev SV, Havlin S, Stanley HE 1993. Phys. A: Stat. Mech. Appl. 200:200–11
    [Google Scholar]
  59. 59. 
    Tang LH, Leschhorn H. 1992. Phys. Rev. A 45:R8309–12
    [Google Scholar]
  60. 60. 
    Jeong H, Kahng B, Kim D 1996. Phys. Rev. Lett. 77:5094–97
    [Google Scholar]
  61. 61. 
    Atis S, Dubey AK, Salin D, Talon L, Le Doussal P, Wiese KJ 2015. Phys. Rev. Lett. 114:234502
    [Google Scholar]
  62. 62. 
    Lemerle S, Ferré J, Chappert C, Mathet V, Giamarchi T, Le Doussal P 1998. Phys. Rev. Lett. 80:849–52
    [Google Scholar]
  63. 63. 
    Kim KJ, Lee JC, Ahn SM, Lee KS, Lee CW et al. 2009. Nature 458:740–42
    [Google Scholar]
  64. 64. 
    Jeudy V, Mougin A, Bustingorry S, Savero Torres W, Gorchon J et al. 2016. Phys. Rev. Lett. 117:057201
    [Google Scholar]
  65. 65. 
    Ioffe LB, Vinokur VM. 1987. J. Phys. C: Solid State Phys. 20:6149–58
    [Google Scholar]
  66. 66. 
    Nattermann T. 1987. Europhys. Lett. 4:1241–46
    [Google Scholar]
  67. 67. 
    Vinokur VM, Marchetti MC, Chen LW 1996. Phys. Rev. Lett. 77:1845–48
    [Google Scholar]
  68. 68. 
    Anderson PW, Kim YB. 1964. Rev. Mod. Phys. 36:39–43
    [Google Scholar]
  69. 69. 
    Agoritsas E, García-García R, Lecomte V, Truskinovsky L, Vandembroucq D 2016. J. Stat. Phys. 164:1394–428
    [Google Scholar]
  70. 70. 
    Kolton AB, Rosso A, Giamarchi T, Krauth W 2009. Phys. Rev. B 79:184207
    [Google Scholar]
  71. 71. 
    Drossel B, Kardar M. 1995. Phys. Rev. E 52:4841–52
    [Google Scholar]
  72. 72. 
    Kolton AB, Rosso A, Giamarchi T 2005. Phys. Rev. Lett. 94:047002
    [Google Scholar]
  73. 73. 
    Rosso A, Krauth W. 2001. Phys. Rev. B 65:012202
    [Google Scholar]
  74. 74. 
    Ferrero EE, Foini L, Giamarchi T, Kolton AB, Rosso A 2017. Phys. Rev. Lett. 118:147208
    [Google Scholar]
  75. 75. 
    Arcangelis L, Godano C, Grasso JR, Lippiello E 2016. Phys. Rep. 628:1–91
    [Google Scholar]
  76. 76. 
    Purrello VH, Iguain JL, Kolton AB, Jagla EA 2017. Phys. Rev. E 96:022112
    [Google Scholar]
  77. 77. 
    Purrello VH, Iguain JL, Kolton AB 2019. Phys. Rev. E 99:032105
    [Google Scholar]
  78. 78. 
    Gorchon J, Bustingorry S, Ferré J, Jeudy V, Kolton AB, Giamarchi T 2014. Phys. Rev. Lett. 113:027205
    [Google Scholar]
  79. 79. 
    Cao X, Bouzat S, Kolton AB, Rosso A 2018. Phys. Rev. E 97:022118
    [Google Scholar]
  80. 80. 
    Diaz Pardo R, Savero Torres W, Kolton AB, Bustingorry S, Jeudy V 2017. Phys. Rev. B 95:184434
    [Google Scholar]
  81. 81. 
    Caballero NB, Fernández Aguirre I, Albornoz LJ, Kolton AB, Rojas-Sánchez JC et al. 2017. Phys. Rev. B 96:224422
    [Google Scholar]
  82. 82. 
    Caballero NB, Ferrero EE, Kolton AB, Curiale J, Jeudy V, Bustingorry S 2018. Phys. Rev. E 97:062122
    [Google Scholar]
  83. 83. 
    Jeudy V, Díaz Pardo R, Savero Torres W, Bustingorry S, Kolton AB 2018. Phys. Rev. B 98:054406
    [Google Scholar]
  84. 84. 
    Grassi MP, Kolton AB, Jeudy V, Mougin A, Bustingorry S, Curiale J 2018. Phys. Rev. B 98:224201
    [Google Scholar]
  85. 85. 
    Herrera Diez L, Jeudy V, Durin G, Casiraghi A, Liu YT et al. 2018. Phys. Rev. B 98:054417
    [Google Scholar]
  86. 86. 
    Domenichini P, Quinteros CP, Granada M, Collin S, George JM et al. 2019. Phys. Rev. B 99:214401
    [Google Scholar]
  87. 87. 
    Shahbazi K, Kim JV, Nembach HT, Shaw JM, Bischof A et al. 2019. Phys. Rev. B 99:094409
    [Google Scholar]
  88. 88. 
    Larkin AI, Ovchinnikov YN. 1979. J. Low Temp. Phys. 34:409–28
    [Google Scholar]
  89. 89. 
    Nattermann T, Shapir Y, Vilfan I 1990. Phys. Rev. B 42:8577–86
    [Google Scholar]
  90. 90. 
    Démery V, Lecomte V, Rosso A 2014. J. Stat. Mech.: Theory Exp. 2014:P03009
    [Google Scholar]
  91. 91. 
    Shibauchi T, Krusin-Elbaum L, Vinokur VM, Argyle B, Weller D, Terris BD 2001. Phys. Rev. Lett. 87:267201
    [Google Scholar]
  92. 92. 
    Moon KW, Kim DH, Yoo SC, Cho CG, Hwang S et al. 2013. Phys. Rev. Lett. 110:107203
    [Google Scholar]
  93. 93. 
    Diaz Pardo R, Moisan N, Albornoz L, Lemaitre A, Curiale J, Jeudy V 2019. Phys. Rev. B 100:184420
    [Google Scholar]
  94. 94. 
    Clemmer JT, Robbins MO. 2019. Phys. Rev. E 100:042121
    [Google Scholar]
  95. 95. 
    Zhou NJ, Zheng B. 2014. Phys. Rev. E 90:012104
    [Google Scholar]
  96. 96. 
    Repain V, Bauer M, Jamet J-P, Ferré J, Mougin A et al. 2004. Europhys. Lett. 68:460–66
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031119-050725
Loading
/content/journals/10.1146/annurev-conmatphys-031119-050725
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error