At the core of equilibrium statistical mechanics lies the notion of statistical ensembles: a collection of microstates, each occurring with a given a priori probability that depends on only a few macroscopic parameters, such as temperature, pressure, volume, and energy. In this review, we discuss recent advances in establishing statistical ensembles for athermal materials. The broad class of granular and particulate materials is immune to the effects of thermal fluctuations because the constituents are macroscopic. In addition, interactions between grains are frictional and dissipative, which invalidates the fundamental postulates of equilibrium statistical mechanics. However, granular materials exhibit distributions of microscopic quantities that are reproducible and often depend on only a few macroscopic parameters. We explore the history of statistical ensemble ideas in the context of granular materials, clarify the nature of such ensembles and their foundational principles, highlight advances in testing key ideas, and discuss applications of ensembles to analyze the collective behavior of granular materials.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Bouchaud J-P. 2002. Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter: Les Houches Session LXXVII, ed. J Kurchan, J-L Barrat, M Feigelman, J Dalibard, pp. 131–97. Berlin/Heidelberg: Springer
  2. Falk ML, Langer JS. 2011. Annu. Rev. Condens. Matter Phys 2:353–73 [Google Scholar]
  3. Cates ME, Wittmer JP, Bouchaud JP, Claudin P. 1998. Phys. Rev. Lett. 81:1841–44 [Google Scholar]
  4. Cates ME, Wittmer JP, Bouchaud JP, Claudin P. 1999. Phys. A 263:354–61 [Google Scholar]
  5. Edwards SF, Oakeshott RBS. 1989. Phys. A 157:1080–90 [Google Scholar]
  6. Chakraborty B, Behringer RP. 2009. In Encyclopedia of Complexity and Systems Science, ed. RA Meyers, pp. 4997–5021. Berlin/Heidelberg: Springer
  7. Liu C-H, Nagel SR, Schecter DA, Coppersmith SN, Majumdar S et al. 1995. Science 269:513–15 [Google Scholar]
  8. Majmudar TS, Behringer RP. 2005. Nature 435:1079–82 [Google Scholar]
  9. Howell DW, Behringer RP, Vege CT. 1999. Phys. Rev. Lett. 82:265241–44 [Google Scholar]
  10. Chandler D. 1987. Introduction to Modern Statistical Mechanics New York: Oxford Univ. Press [Google Scholar]
  11. Edwards SF, Grinev DV. 2002. Adv. Phys. 51:81669–84 [Google Scholar]
  12. Donev A, Torquato S, Stillinger FH, Connelly R. 2004. J. Appl. Phys. 95:989–99 [Google Scholar]
  13. Liu AJ, Nagel SR. 2010. Annu. Rev. Condens. Matter Phys. 1:347–69 [Google Scholar]
  14. Bernal JD, Mason J. 1960. Nature 188:4754910–11 [Google Scholar]
  15. Ciamarra MP, Richard P, Schröter M, Tighe BP. 2012. Soft Matter 8:389731–37 [Google Scholar]
  16. Song C, Wang P, Makse HA. 2008. Nature 453:7195629–32 [Google Scholar]
  17. Jerkins M, Schröter M, Harry L, Senden TJ, Saadatfar M, Aste T. 2008. Phys. Rev. Lett. 101:118301–4 [Google Scholar]
  18. Onoda GY, Liniger EG. 1990. Phys. Rev. Lett. 64:222727–30 [Google Scholar]
  19. Dantu P. 1957. Proc. Int. Conf. Soil Mech. Found. Eng., 4th, London, pp. 144–48. London: Butterworths Sci. Publ
  20. Drescher A, de Josselin de Jong G. 1972. J. Mech. Phys. Solids 20:337–40 [Google Scholar]
  21. Blumenfeld R, Edwards SF. 2009. J. Phys. Chem. B 113:123981–87 [Google Scholar]
  22. Edwards SF. 2005. Phys. A 353:114–18 [Google Scholar]
  23. Henkes S, Chakraborty B. 2005. Phys. Rev. Lett. 95:198002 [Google Scholar]
  24. Henkes S, O’Hern CS, Chakraborty B. 2007. Phys. Rev. Lett. 99:3038002 [Google Scholar]
  25. Henkes S, Chakraborty B. 2009. Phys. Rev. E 79:061301 [Google Scholar]
  26. Metzger PT. 2008. Phys. Rev. E 77:011307 [Google Scholar]
  27. Tighe BP, van Eerd ART, Vlugt TJH. 2008. Phys. Rev. Lett. 100:23238001 [Google Scholar]
  28. Chakraborty B. 2010. Soft Matter 6:2884–93 [Google Scholar]
  29. Cugliandolo L, Kurchan J. 1999. Phys. A 263:242–51 [Google Scholar]
  30. Langer JS, Manning ML. 2007. Phys. Rev. E 76:056107 [Google Scholar]
  31. Barrat A, Kurchan J, Loreto V, Sellitto M. 2000. Phys. Rev. Lett. 85:5034–37 [Google Scholar]
  32. Barrat A, Kurchan J. , Loreto V, Sellitto M. 2001. Phys. Rev. E 63:051301 [Google Scholar]
  33. Coniglio A, Fierro A, Nicodemi M. . 2001. Phys. A 302:1–4193–201 [Google Scholar]
  34. Coniglio A, Fierro A, Nicodemi M. 2002. Eur. Phys. J. E 9:3219–26 [Google Scholar]
  35. Kurchan J. 2001. C. R. Acad. Sci. Ser. IV Phys. Astrophys. 2:239–47 [Google Scholar]
  36. Makse HA, Kurchan J. 2002. Nature 415:6872614–17 [Google Scholar]
  37. Gao G-J, Blawzdziewicz J, O’Hern CS, Shattuck M. 2009. Phys. Rev. E 80:061301 [Google Scholar]
  38. McNamara S, Richard P, de Richter S, Le Caër G, Delannay R. 2009. Phys. Rev. E 80:3031301 [Google Scholar]
  39. Asenjo D, Paillusson F, Frenkel D. 2014. Phys. Rev. Lett. 112:9098002 [Google Scholar]
  40. Bertin E, Dauchot O, Droz M. 2004. Phys. Rev. Lett. 93:230601 [Google Scholar]
  41. Bertin E, Dauchot O, Droz M. 2005. Phys. Rev. E 71:046140 [Google Scholar]
  42. Bertin E, Dauchot O, Droz M. 2006. Phys. Rev. Lett. 96:120601 [Google Scholar]
  43. Ball R, Blumenfeld R. 2002. Phys. Rev. Lett. 88:115505 [Google Scholar]
  44. Blumenfeld R. 2008. Lecture Notes in Complex Systems, ed. T Aste, pp. 43–53. Singapore:World Sci.
  45. Goddard JD. 1986. Recent Developments in Structered Continua. Pitman Research Notes in Mathematics No. 143, ed. D DeKee, PN Kaloni, p. 179. New York: J. Wiley
  46. DeGiuli E, McElwaine J. 2011. Phys. Rev. E 84:041310 [Google Scholar]
  47. Liu I-S. 2002. Continuum Mechanics Berlin/Heidelberg: Springer [Google Scholar]
  48. Dhar A, Chaudhuri P, Dasgupta C. 2000. Phys. Rev. B 61:6227–37 [Google Scholar]
  49. Mezard M, Parisi G. 1999. Phys. Rev. Lett. 82:747–50 [Google Scholar]
  50. Sastry S. 2001. Nature 409:164–67 [Google Scholar]
  51. Stillinger FH. 1995. Science 267:1935–39 [Google Scholar]
  52. Nowak ER, Knight JB, Ben-Naim E, Jaeger HM, Nagel SR. 1998. Phys. Rev. E 57:21971–82 [Google Scholar]
  53. Schröter M, Goldman DI, Swinney HL. 2005. Phys. Rev. E 71:330301 [Google Scholar]
  54. Métayer J-F, Suntrup DJ 3rd, Radin C, Swinney HL, Schröter M. 2011. Europhys. Lett. 93:664003 [Google Scholar]
  55. Schröter M, Nägle S, Radin C, Harry L. 2007. Europhys. Lett. 78:444004 [Google Scholar]
  56. Aste T, Matteo T. 2008. Eur. Phys. J. B 64:3–4511–17 [Google Scholar]
  57. Brisco C, Song C, Wang P, Makse HA. 2008. Phys. Rev. Lett. 101:18188001 [Google Scholar]
  58. Ciamarra MP, Coniglio A, Nicodemi M. 2006. Phys. Rev. Lett. 97:158001 [Google Scholar]
  59. Pugnaloni LA, Maza D, Sanchez I, Gago PA, Damas J, Zuriguel I. 2010. Phys. Rev. E 82:050301 [Google Scholar]
  60. Schröder-Turk GE, Mickel W, Schröter M, Delaney GW, Saadatfar M et al. 2010. Europhys. Lett. 90:334001 [Google Scholar]
  61. Daniels KE, Behringer RP. 2006. J. Stat. Mech. Theory Exp. 7:P07018 [Google Scholar]
  62. Puckett JG, Lechenault F, Daniels KE. 2011. Phys. Rev. E 83:4041301 [Google Scholar]
  63. Dean D, Lefèvre A. 2003. Phys. Rev. Lett. 90:198301 [Google Scholar]
  64. Zhao S-C, Sidle S, Swinney HL, Schröter M. 2012. Europhys. Lett. 97:334004 [Google Scholar]
  65. Aste T, Di Matteo T. 2008. Phys. Rev. E 77:221309 [Google Scholar]
  66. Blumenfeld R, Edwards SF. 2003. Phys. Rev. Lett. 90:11114303 [Google Scholar]
  67. Blumenfeld R, Jordan JF. 2012. Phys. Rev. Lett. 109:23238001 [Google Scholar]
  68. Schröter M, Zhao S-C. 2014. Soft Matter 10:4208–16 [Google Scholar]
  69. Puckett JG, Daniels KE. 2013. Phys. Rev. Lett. 110:5058001 [Google Scholar]
  70. Bi D, Zhang J, Behringer RP, Chakraborty B. 2013. Europhys. Lett 102:34002 [Google Scholar]
  71. Lois G, Zhang J, Majmudar TS, Henkes S, Chakraborty B et al. 2009. Phys. Rev. E 80:060303 [Google Scholar]
  72. Wang K, Song C, Wang P, Makse HA. 2010. Europhys. Lett. 91:668001 [Google Scholar]
  73. DeGiuli E. . 2013. Continuum limits of granular systems. PhD Thesis. Univ. B. C., Vancouver
  74. Metzger PT, Donahue CM. 2005. Phys. Rev. Lett. 94:148001 [Google Scholar]
  75. Metzger PT. 2004. Phys. Rev. E 70:5051303 [Google Scholar]
  76. Snoeijer JH, van Hecke M, Somfai E, van Saarloos W. 2004. Phys. Rev. E 67:030302 [Google Scholar]
  77. Snoeijer JH, Vlugt TJH, Ellenbroek WG, van Hecke M, van Leeuwen JMJ. 2004. Phys. Rev. E 70:061306 [Google Scholar]
  78. Tighe BP, Socolar JES, Schaeffer DG, Garrett Mitchener W, Huber ML. 2005. Phys. Rev. E 72:031306 [Google Scholar]
  79. van Eerd ART, Ellenbroek WG, van Hecke M, Snoeijer JH, Vlugt TJH. 2007. Phys. Rev. E 75:6060302 [Google Scholar]
  80. Unger T, Kertész J, Wolf DE. 2005. Phys. Rev. Lett. 94:17178001 [Google Scholar]
  81. Tighe, B P. 2010. Soft Matter 6:132908–17 [Google Scholar]
  82. van Eerd ART, Tighe BP, Vlugt TJH. 2009. Mol. Simul. 35:141168–84 [Google Scholar]
  83. Tighe BP, Vlugt TJH. 2011. J. Stat. Mech. Theory Exp. 4:P04002 [Google Scholar]
  84. Tighe BP, Vlugt TJH. 2010. J. Stat. Mech. Theory Exp. 1:P01015 [Google Scholar]
  85. Sarkar S, Bi D, Zhang J. 2013. Phys. Rev. Lett. 111:6068301 [Google Scholar]
  86. Bi D, Zhang J, Chakraborty B, Behringer RP. 2011. Nature 480:7377355–58 [Google Scholar]
  87. Ren J. 2013. Nonlinear dynamics and network properties in granular materials under shear. PhD Thesis, Duke Univ., Durham, NC
  88. Monthus C, Bouchaud J-P. 1996. J. Phys. Math. Gen. 29:3847–69 [Google Scholar]
  89. Sollich P. 1998. Phys. Rev. E 58:738–59 [Google Scholar]
  90. Langer JS. 2008. Phys. Rev. E 77:021502 [Google Scholar]
  91. Kamrin K, Koval G. . 2012. Phys. Rev. Lett. 108:178301 [Google Scholar]
  92. Reddy KA, Forterre Y, Pouliquen O. 2011. Phys. Rev. Lett. 106:10108301 [Google Scholar]
  93. Behringer RP, Bi D, Chakraborty B, Henkes S, Hartley RR. 2008. Phys. Rev. Lett. 101:268301 [Google Scholar]
  94. Bi D, Chakraborty B. 2009. Philos. Trans. R. Soc. A 367:5073–90 [Google Scholar]
  95. Hartley RR, Behringer RP. 2003. Nature 421:928–31 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error