1932

Abstract

The order parameter and its variations in space and time in many different states in condensed matter physics at low temperatures are described by the complex function Ψ(, ). These states include superfluids, superconductors, and a subclass of antiferromagnets and charge density waves. The collective fluctuations in the ordered state may then be categorized as oscillations of phase and amplitude of Ψ(, ). The phase oscillations are the Goldstone modes of the broken continuous symmetry. The amplitude modes, even at long wavelengths, are well defined and are decoupled from the phase oscillations only near particle-hole symmetry, where the equations of motion have an effective Lorentz symmetry, as in particle physics and if there are no significant avenues for decay into other excitations. They bear close correspondence with the so-called Higgs modes in particle physics, whose prediction and discovery are very important for the standard model of particle physics. In this review, we discuss the theory and the possible observation of the amplitude or Higgs modes in condensed matter physics—in superconductors, cold atoms in periodic lattices, and uniaxial antiferromagnets. We discuss the necessity for at least approximate particle-hole symmetry as well as the special conditions required to couple to such modes because, being scalars, they do not couple linearly to the usual condensed matter probes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031214-014350
2015-03-10
2025-02-11
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/6/1/annurev-conmatphys-031214-014350.html?itemId=/content/journals/10.1146/annurev-conmatphys-031214-014350&mimeType=html&fmt=ahah

Literature Cited

  1. Ginzburg VL, Landau LD. 1950. Zh. Eksp. Teor. Fiz. 20:1064–82 [Google Scholar]
  2. Landau LD. 1941. Zh. Eksp. Teor. Fiz. 11:592–614 [Google Scholar]
  3. Bogoliubov NN. 1947. Izv. Akad. Nauk SSR Ser. Fiz. 11:77–90 [Google Scholar]
  4. Bogoliubov NN. . 1947. J. Phys. USSR 11:23–32 [Google Scholar]
  5. Bardeen J, Cooper LN, Schrieffer JR. 1957. Phys. Rev. 108:1175–204 [Google Scholar]
  6. Gor’kov LP. 1959. Sov. Phys. JETP-USSR 36:1364–67 [Google Scholar]
  7. Gross E. 1961. Nuovo Cimento Ser. 10 20:454–77 [Google Scholar]
  8. Pitaevskii LP. 1961. Sov. Phys. JETP-USSR 13:451–54 [Google Scholar]
  9. Goldstone J. 1961. Nuovo Cimento. 19:154–64 [Google Scholar]
  10. Goldstone J, Salam A, Weinberg S. 1962. Phys. Rev. 127:965–70 [Google Scholar]
  11. Anderson PW. 1958. Phys. Rev. 110:827–35 [Google Scholar]
  12. Higgs PW. 1964. Phys. Rev. Lett. 13:508–9 [Google Scholar]
  13. Littlewood PB, Varma CM. 1981. Phys. Rev. Lett. 47:811–14 [Google Scholar]
  14. Littlewood PB, Varma CM. 1982. Phys. Rev. B 26:4883–93 [Google Scholar]
  15. Varma C. 2002. J. Low Temp. Phys. 126:901–9 [Google Scholar]
  16. Huber SD, Altman E, Büchler HP, Blatter G. 2007. Phys. Rev. B 75:085106 [Google Scholar]
  17. Keeling J, Marchetti FM, Szymanska MH, Littlewood PB. 2007. Semicond. Sci. Technol. 22:R1–26 [Google Scholar]
  18. Nambu Y. 1960. Phys. Rev. 117:648–63 [Google Scholar]
  19. Martin PC. 1969. Superconductivity Vol. 1 Parks RD. 371–92 New York: Marcel Dekker [Google Scholar]
  20. Abrahams E, Tsuneto T. 1966. Phys. Rev. 152:416–32 [Google Scholar]
  21. Caroli C, Maki K. 1967. Phys. Rev. 159:306–15 [Google Scholar]
  22. Hoddeson L, Brown L, Riordan M, Dresden M. 1997. The Rise of the Standard Model Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  23. Anderson PW. 1963. Phys. Rev. 130:439–42 [Google Scholar]
  24. Nambu Y, Jona-Lasinio G. 1961. Phys. Rev. 122:345–58 [Google Scholar]
  25. Englert F, Brout R. 1964. Phys. Rev. Lett. 13:321–23 [Google Scholar]
  26. Guralnik GS, Hagen CR, Kibble TWB. 1964. Phys. Rev. Lett. 13:585–87 [Google Scholar]
  27. Weinberg S. 1967. Phys. Rev. Lett. 19:1264–66 [Google Scholar]
  28. Salam A, Ward JC. 1964. Phys. Lett. 13:168–71 [Google Scholar]
  29. Salam A. 1968. Proc. Nobel Symp., Lerum, Swed., pp. 367–77. Stockholm, Swed.: Almqvist and Wiksells
  30. CMS Collab 2012. Science 339:1569–75 [Google Scholar]
  31. ATLAS Collab 2012. Science 339:1576–82 [Google Scholar]
  32. Shifman M. 2012. arXiv:1211.0004
  33. Sooryakumar R, Klein MV. 1980. Phys. Rev. Lett. 45:660–62 [Google Scholar]
  34. Sooryakumar R, Klein MV. 1981. Phys. Rev. B 23:3213–21 [Google Scholar]
  35. Higgs P. 1997. See Ref. 22, pp. 478–524
  36. Rüegg C, Normand B, Matsumoto M, Furrer A, McMorrow DF et al. 2008. Phys. Rev. Lett. 100:205701 [Google Scholar]
  37. Méasson M-A, Gallais Y, Cazayous M, Clair B, Rodière P et al. 2014. Phys. Rev. B 89:060503 [Google Scholar]
  38. Schrieffer JR. 1964. Theory of Superconductivity New York: W.A. Benjamin [Google Scholar]
  39. Hackl R, Kaiser R, Schicktanz S. 1983. J. Phys. C Solid State Phys. 16:1729–39 [Google Scholar]
  40. Browne D, Levin K. 1983. Phys. Rev. B 28:4029–32 [Google Scholar]
  41. Kurihara Y. 1983. J. Phys. Soc. Jpn. 52:542–48 [Google Scholar]
  42. Balseiro C, Falicov LM. 1980. Phys. Rev. Lett. 45:662–65 [Google Scholar]
  43. Klein MV, Dierker SB. 1984. Phys. Rev. B 29:4976–91 [Google Scholar]
  44. Bardasis A, Schrieffer JR. 1961. Phys. Rev 121:1050–62 [Google Scholar]
  45. Tüttö I, Zawadowski A. 1992. Phys. Rev. B 45:4842–54 [Google Scholar]
  46. Matsunaga R, Hamada Y, Makise K, Uzawa Y, Terai H et al. 2013. Phys. Rev. Lett 111:057002 [Google Scholar]
  47. Barankov RA, Levitov LS. 2006. Phys. Rev. Lett. 96:230403 [Google Scholar]
  48. Yuzbashyan EA, Tsyplyatyev O, Altshuler BL. 2006. Phys. Rev. Lett. 96:097005 [Google Scholar]
  49. Carlson R, Goldman AM. 1975. Phys. Rev. Lett. 34:11–15 [Google Scholar]
  50. Kadin AM, Goldman AM. 1982. Phys. Rev. B 25:6701–10 [Google Scholar]
  51. Leggett AJ. 1975. Rev. Mod. Phys. 4:331–414 [Google Scholar]
  52. Wölfle P. 1977. Phys. B 90:96–106 [Google Scholar]
  53. McKenzie R, Sauls JA. 1990. Modern Problems in Condensed Matter Physics Vol. 26 Halperin WP, Pitaevskii LP. 255–311 Amsterdam, Neth.: North-Holland Publ. [Google Scholar]
  54. Volovik GE, Zubkov MA. 2014. J. Low Temp. Phys. 175:486–97 [Google Scholar]
  55. Gallais Y, Sacuto A, Devereaux TP, Colson D. 2005. Phys. Rev. B 71:012506 [Google Scholar]
  56. Phillips WD. 1998. Rev. Mod. Phys. 70:721–41 [Google Scholar]
  57. Davis KB, Mewes MO, Andrews MR, van Druten NJ, Durfee DS et al. 1995. Phys. Rev. Lett. 75:3969–73 [Google Scholar]
  58. Greiner M, Mandel O, Esslinger T, Hansch TW, Bloch I. 2002. Nature 415:39–44 [Google Scholar]
  59. Jaksch D, Zoller P. 2005. Ann. Phys. 315:52–79 [Google Scholar]
  60. Pethick C, Smith H. 2008. Bose-Einstein Condensation in Dilute Gases Cambridge, UK: Cambridge Univ. Press, 2nd ed.. [Google Scholar]
  61. Fisher MPA, Weichman PB, Grinstein G, Fisher DS. 1989. Phys. Rev. B 40:546–70 [Google Scholar]
  62. Freericks JK, Monien H. 1996. Phys. Rev. B 53:2691–700 [Google Scholar]
  63. Dutta A, Trefzger C, Sengupta K. 2012. Phys. Rev. B 86:085140 [Google Scholar]
  64. Krauth W, Trivedi N. 1991. Europhys. Lett. 14:627–32 [Google Scholar]
  65. Capogrosso-Sansone NV. 2007. Phys. Rev. B 75:134302 [Google Scholar]
  66. Capogrosso-Sansone B, Söyler G, Prokof’ev N, Svistunov B. 2008. Phys. Rev. A 77:015602 [Google Scholar]
  67. Sachdev S. 2011. Quantum Phase Transitions. Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  68. Altman E, Auerbach A. 2002. Phys. Rev. Lett. 89:250404 [Google Scholar]
  69. Huber SD, Theiler B, Altman E, Blatter G. 2008. Phys. Rev. Lett. 100:050404 [Google Scholar]
  70. Pekker D, Wunsch B, Kitagawa T, Manousakis E, Sørensen AS, Demler E. 2012. Phys. Rev. B 86:144527 [Google Scholar]
  71. Chubukov AV, Sachdev S, Ye J. 1994. Phys. Rev. B 49:11919–61 [Google Scholar]
  72. Sachdev S. 1999. Phys. Rev. B 59:14054–73 [Google Scholar]
  73. Zwerger W. 2004. Phys. Rev. Lett. 92:027203 [Google Scholar]
  74. Lindner NH, Auerbach A. 2010. Phys. Rev. B 81:054512 [Google Scholar]
  75. Podolsky D, Auerbach A, Arovas DP. 2011. Phys. Rev. B 84:174522 [Google Scholar]
  76. Endres M, Fukuhara T, Pekker D, Cheneau M, Schauss P et al. 2012. Nature 487:454–58 [Google Scholar]
  77. Endres M. 2013. Probing correlated quantum many-body systems at the single-particle level. PhD thesis, Ludwig Maximilians Univ., München, Ger.
  78. Podolsky D, Sachdev S. 2012. Phys. Rev. B 86:054508 [Google Scholar]
  79. Pollet L, Prokof’ev N. 2012. Phys. Rev. Lett. 109:010401 [Google Scholar]
  80. Gazit S, Podolsky D, Auerbach A. 2013. Phys. Rev. Lett. 110:140401 [Google Scholar]
  81. Chen K, Liu L, Deng Y, Pollet L, Prokof’ev N. 2014. Phys. Rev. Lett. 112:030402 [Google Scholar]
  82. Hasenbusch M, Török T. 1999. J. Phys. Math. Gen. 32:6361–71 [Google Scholar]
  83. Hasenbusch M. 2001. J. Phys. Math. Gen. 34:8221–36 [Google Scholar]
  84. Stöferle T, Moritz H, Schori C, Köhl M, Esslinger T. 2004. Phys. Rev. Lett. 92:130403 [Google Scholar]
  85. Schori C, Stöferle T, Moritz H, Köhl M, Esslinger T. 2004. Phys. Rev. Lett. 93:240402 [Google Scholar]
  86. Bissbort U, Götze S, Li Y, Heinze J, Krauser JS et al. 2011. Phys. Rev. Lett. 106:205303 [Google Scholar]
  87. Bakr WS, Peng A, Tai ME, Ma R, Simon J et al. 2010. Science 329:547–50 [Google Scholar]
  88. Sherson JF, Weitenberg C, Endres M, Cheneau M, Bloch I, Kuhr S. 2010. Nature 467:68–72 [Google Scholar]
  89. Lin YJ, Compton RL, Jimenez-Garcia K, Porto JV, Spielman IB. 2009. Nature 462:628–32 [Google Scholar]
  90. Bruun GM. 2014. arXiv:1403.6876
  91. Banerjee D, Dalmonte M, Müller M, Rico E, Stebler P et al. 2012. Phys. Rev. Lett. 109:175302 [Google Scholar]
  92. Oosawa A, Fujisawa M, Osakabe T, Kakurai K, Tanaka H. 2003. J. Phys. Soc. Jpn. 72:1026–29 [Google Scholar]
  93. Tanaka H, Goto K, Fujisawa M, Ono T, Uwatoko Y. 2003. Phys. B Condens. Matter 697:329–33 [Google Scholar]
  94. Rüegg C, Furrer A, Sheptyakov D, Strässle T, Krämer KW et al. 2004. Phys. Rev. Lett. 93:257201 [Google Scholar]
  95. Oosawa A, Kakurai K, Osakabe T, Nakamura M, Takeda M, Tanaka H. 2004. J. Phys. Soc. Jpn. 73:1446–49 [Google Scholar]
  96. Goto K, Fujisawa M, Ono T, Tanaka H, Uwatoko Y. 2004. J. Phys. Soc. Jpn. 73:3254–57 [Google Scholar]
  97. Matsumoto M, Normand B, Rice TM, Sigrist M. 2004. Phys. Rev. B 69:054423 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031214-014350
Loading
/content/journals/10.1146/annurev-conmatphys-031214-014350
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error