1932

Abstract

An effective mass of charge carriers that is significantly larger than the mass of a free electron develops at low temperatures in certain lanthanide- and actinide-based metals, including those formed with plutonium, owing to strong electron-electron interactions. This heavy-fermion mass is reflected in a substantially enhanced electronic coefficient of specific heat γ, which for elemental Pu is much larger than that of normal metals. By our definition, there are twelve Pu-based heavy-fermion compounds, most discovered recently, whose basic properties are known and discussed. Relative to other examples, these Pu-based heavy-fermion systems are particularly complex owing in part to the possible simultaneous presence of multiple, nearly degenerate 5fn configurations. This complexity poses significant opportunities as well as challenges, including understanding the origin of unconventional superconductivity in some of these materials.

[Erratum, Closure]

An erratum has been published for this article:
Plutonium-Based Heavy-Fermion Systems
Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031214-014508
2015-03-10
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/6/1/annurev-conmatphys-031214-014508.html?itemId=/content/journals/10.1146/annurev-conmatphys-031214-014508&mimeType=html&fmt=ahah

Literature Cited

  1. Hecker S. 2000. Los Alamos Sci. 26:16–23
  2. Albers RC. 2001. Nature 410:759–61
  3. Hill HH, Lindsay JDG, White RW, Asprey LB, Struebing VO, Matthias BT. 1971. Physica 55:615–21
  4. Anderson PW. 1961. Phys. Rev. 124:41–53
  5. Schrieffer JR, Wolff PA. 1966. Phys. Rev. 149:491–92
  6. Savrasov SY, Kotliar G, Abrahams E. 2001. Nature 410:793–95
  7. Booth CH, Jiang Y, Wang DL, Mitchell JN, Tobash PH et al. 2012. Proc. Natl. Acad. Sci. USA 109:10205–9
  8. Arko AJ, Joyce JJ, Morales L, Wills J, Lashley J et al. 2000. Phys. Rev. B 62:1773–79
  9. Zhu J-X, Albers RC, Haule K, Kotliar G, Wills JM. 2013. Nat. Commun. 4:3644
  10. Lawrence JM, Riseborough PS, Parks RD. 1981. Rep. Prog. Phys. 44:1–84
  11. Fisk Z, Hess DW, Pethick CJ, Pines D, Smith JL et al. 1988. Science 239:33–42
  12. Clark DL, Hecker SS, Jarvinen GD, Neu MP. 2006. The Chemistry of the Actinides and Transactinides Morss LR, Edelstein NM, Fuger J. 813–1264 New York: Springer
  13. Stewart GR, Fisk Z, Smith JL, Willis JO, Wire MS. 1984. Phys. Rev. B 30:1249–52
  14. Brodsky MB, Friddle RJ. 1975. Proceedings of the 20th Annual Conference on Magnetism and Magnetic Materials (1974) Graham CD, Lander GH, Rhyne JJ. 353 San Francisco: Am. Inst. Phys.
  15. Ott HR, Rudigier H, Fisk Z, Smith JL. 1983. Phys. Rev. Lett. 50:1595–98
  16. Stewart GR, Elliott RO. 1985. Phys. Rev. B 31:4669–71
  17. Arko AJ, Fradin FY, Brodsky MB. 1973. Phys. Rev. B 8:4104–18
  18. Moore KT, van der Laan G. 2009. Rev. Mod. Phys. 81:235–98
  19. Fradin FY, Arko AJ, Brodsky MB. 1974. AIP Conference Proceedings Graham CD, Rhyne JJ. 192 San Francisco: Am. Inst. Phys.
  20. Kadowaki K, Woods SB. 1986. Solid State Commun. 58:507–9
  21. Bauer ED, Tobash PH, Mitchell JN, Sarrao JL. 2012. Philos. Mag. 92:2466–91
  22. Chudo H, Koutroulakis G, Yasuoka H, Bauer ED, Tobash PH et al. 2014. J. Phys. Condens. Matter 26:036001
  23. Haga Y, Bauer ED, Tobash PH, Mitchell JN, Ayala-Valenzuela O et al. 2013. J. Korean Phys. Soc. 63:380–82
  24. Wang CCJ, Jones MD, Zhu J-X. 2013. Phys. Rev. B 88:125106
  25. Boulet P, Colineau E, Wastin F, Javorský P, Griveau JC et al. 2005. Phys. Rev. B 72:064438
  26. Bauer ED, Tobash PH, Mitchell JN, Kennison JA, Ronning F et al. 2011. J. Phys. Condens. Matter 23:094223
  27. Thompson JD, Fisk Z. 2012. J. Phys. Soc. Jpn. 81:011002
  28. Sarrao JL, Morales LA, Thompson JD, Scott BL, Stewart GR et al. 2002. Nature 420:297–99
  29. Wastin F, Boulet P, Rebizant J, Colineau E, Lander GH. 2003. J. Phys. Condens. Matter 15:S2279
  30. Javorský P, Colineau E, Wastin F, Jutier F, Griveau JC et al. 2007. Phys. Rev. B 75:184501
  31. Bauer ED, Altarawneh MM, Tobash PH, Gofryk K, Ayala-Valenzuela OE et al. 2012. J. Phys. Condens. Matter 24:052206
  32. Haga Y, Aoki D, Matsuda TD, Nakajima K, Arai Y et al. 2005. J. Phys. Soc. Jpn. 74:1698–701
  33. Orlando TP, McNiff EJ, Foner S, Beasley MR. 1979. Phys. Rev. B 19:4545–61
  34. Werthamer NR, Helfand E, Hohenberg PC. 1966. Phys. Rev. 147:295–302
  35. Bianchi A, Movshovich R, Capan C, Pagliuso PG, Sarrao JL. 2003. Phys. Rev. Lett. 91:187004
/content/journals/10.1146/annurev-conmatphys-031214-014508
Loading
/content/journals/10.1146/annurev-conmatphys-031214-014508
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error