1932

Abstract

It has been said that the cell is the test tube of the twenty-first century. If so, the theoretical tools needed to quantitatively and predictively describe what goes on in such test tubes lag sorely behind the stunning experimental advances in biology seen in the decades since the molecular biology revolution began. Perhaps surprisingly, one of the theoretical tools that has been used with great success on problems ranging from how cells communicate with their environment and each other to the nature of the organization of proteins and lipids within the cell membrane is statistical mechanics. A knee-jerk reaction to the use of statistical mechanics in the description of cellular processes is that living organisms are so far from equilibrium that one has no business even thinking about it. But such reactions are probably too hasty given that there are many regimes in which, because of a separation of timescales, for example, such an approach can be a useful first step. In this article, we explore the power of statistical mechanical thinking in the biological setting, with special emphasis on cell signaling and regulation. We show how such models are used to make predictions and describe some recent experiments designed to test them. We also consider the limits of such models based on the relative timescales of the processes of interest.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031214-014558
2015-03-10
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/6/1/annurev-conmatphys-031214-014558.html?itemId=/content/journals/10.1146/annurev-conmatphys-031214-014558&mimeType=html&fmt=ahah

Literature Cited

  1. Hopfield JJ. 2013. Annu. Rev. Condens. Matter Phys. 5:1–13 [Google Scholar]
  2. Echols H, Gross C. 2001. Operators and Promoters: The Story of Molecular Biology and Its Creators Berkeley: Univ. Calif. Press [Google Scholar]
  3. Purnick PE, Weiss R. 2009. Nat. Rev. Mol. Cell Biol. 10:410–22 [Google Scholar]
  4. Mukherji S, van Oudenaarden A. 2009. Nat. Rev. Genet. 10:859–71 [Google Scholar]
  5. Bashor CJ, Horwitz AA, Peisajovich SG, Lim WA. 2010. Annu. Rev. Biophys. 39:515–37 [Google Scholar]
  6. Slusarczyk AL, Lin A, Weiss R. 2012. Nat. Rev. Genet. 13:406–20 [Google Scholar]
  7. Halder G, Callaerts P, Gehring WJ. 1995. Science 267:1788–92 [Google Scholar]
  8. Toettcher JE, Gong D, Lim WA, Weiner OD. 2011. Nat. Methods 8:837–39 [Google Scholar]
  9. Toettcher JE, Weiner OD, Lim WA. 2013. Cell 155:1422–34 [Google Scholar]
  10. Motta-Mena LB, Reade A, Mallory MJ, Glantz S, Weiner OD et al. 2014. Nat. Chem. Biol. 10:196–202 [Google Scholar]
  11. Sourjik V, Berg HC. 2002. Proc. Natl. Acad. Sci. USA 99:123–27 [Google Scholar]
  12. Sourjik V, Berg HC. 2002. Proc. Natl. Acad. Sci. USA 99:12669–74 [Google Scholar]
  13. Hersen P, McClean MN, Mahadevan L, Ramanathan S. 2008. Proc. Natl. Acad. Sci. USA 105:7165–70 [Google Scholar]
  14. Mettetal JT, Muzzey D, Gomez-Uribe C, van Oudenaarden A. 2008. Science 319:482–84 [Google Scholar]
  15. Muzzey D, Gomez-Uribe CA, Mettetal JT, van Oudenaarden A. 2009. Cell 138:160–71 [Google Scholar]
  16. Phillips R, Kondev J, Theriot J, Garcia H. 2012. Physical Biology of the Cell New York: Garland Press [Google Scholar]
  17. Oehler S, Amouyal M, Kolkhof P, von Wilcken-Bergmann B, Müller-Hill B. 1994. EMBO J. 13:3348–55 [Google Scholar]
  18. Muller J, Oehler S, Muller-Hill B. 1996. J. Mol. Biol. 257:21–29 [Google Scholar]
  19. Golding I, Paulsson J, Zawilski SM, Cox EC. 2005. Cell 123:1025–36 [Google Scholar]
  20. Kuhlman T, Zhang Z, Saier MH, Hwa T. 2007. Proc. Natl. Acad. Sci. USA 104:6043–48 [Google Scholar]
  21. So LH, Ghosh A, Zong C, Sepulveda LA, Segev R, Golding I. 2011. Nat. Genet. 43:554–60 [Google Scholar]
  22. Chaikin PM, Lubensky TC. 2000. Principles of Condensed Matter Physics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  23. Phillips R. 2001. Crystals, Defects and Microstructures Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  24. Grigorova IL, Phleger NJ, Mutalik VK, Gross CA. 2006. Proc. Natl. Acad. Sci. USA 103:5332–37 [Google Scholar]
  25. Ko MS. 1991. J. Theor. Biol. 153:181–94 [Google Scholar]
  26. Peccoud J, Ycart B. 1995. Theor. Popul. Biol. 48:222–34 [Google Scholar]
  27. Record MTJ, Reznikoff W, Craig M, McQuade K, Schlax P. 1996. Escherichia coli and Salmonella Cellular and Molecular Biology Neidhardt FC, Curtis R III, Ingraham JL, Lin ECC, Low KB et al.792–821 Washington DC: ASM Press [Google Scholar]
  28. Kepler TB, Elston TC. 2001. Biophys. J. 81:3116–36 [Google Scholar]
  29. Sanchez A, Kondev J. 2008. Proc. Natl. Acad. Sci. USA 105:5081–86 [Google Scholar]
  30. Michel D. 2010. Prog. Biophys. Mol. Biol. 102:16–37 [Google Scholar]
  31. Ackers GK, Johnson AD, Shea MA. 1982. Proc. Natl. Acad. Sci. USA 79:1129–33 [Google Scholar]
  32. Shea MA, Ackers GK. 1985. J. Mol. Biol. 181:211–30 [Google Scholar]
  33. Buchler NE, Gerland U, Hwa T. 2003. Proc. Natl. Acad. Sci. USA 100:5136–41 [Google Scholar]
  34. Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T et al. 2005. Curr. Opin. Genet. Dev. 15:116–24 [Google Scholar]
  35. Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T et al. 2005. Curr. Opin. Genet. Dev. 15:125–35 [Google Scholar]
  36. Gertz J, Siggia ED, Cohen BA. 2009. Nature 457:215–18 [Google Scholar]
  37. Sherman MS, Cohen BA. 2012. PLOS Comput. Biol. 8:e1002407 [Google Scholar]
  38. Perrin J. 1990 (1923). Atoms Woodbridge, CT: Ox Bow Press [Google Scholar]
  39. Garcia HG, Phillips R. 2011. Proc. Natl. Acad. Sci. USA 108:12173–78 [Google Scholar]
  40. Brewster RC, Weinert FM, Garcia HG, Song D, Rydenfelt M, Phillips R. 2014. Cell 156:1312–23 [Google Scholar]
  41. Elf J, Li GW, Xie XS. 2007. Science 316:1191–94 [Google Scholar]
  42. Hammar P, Wallden M, Fange D, Persson F, Baltekin O et al. 2014. Nat. Genet. 46:405–8 [Google Scholar]
  43. Shahrezaei V, Swain PS. 2008. Proc. Natl. Acad. Sci. USA 105:17256–61 [Google Scholar]
  44. Garcia HG, Sanchez A, Kuhlman T, Kondev J, Phillips R. 2010. Trends Cell Biol. 20:723–33 [Google Scholar]
  45. Frank SA. 2014. J. Evol. Biol. 27:1172–78 [Google Scholar]
  46. Gardner TS, Cantor CR, Collins JJ. 2000. Nature 403:339–42 [Google Scholar]
  47. Elowitz MB, Leibler S. 2000. Nature 403:335–38 [Google Scholar]
  48. Suel GM, Garcia-Ojalvo J, Liberman LM, Elowitz MB. 2006. Nature 440:545–50 [Google Scholar]
  49. Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ et al. 2006. Cell 126:755–66 [Google Scholar]
  50. Suel GM, Kulkarni RP, Dworkin J, Garcia-Ojalvo J, Elowitz MB. 2007. Science 315:1716–19 [Google Scholar]
  51. Phillips R, Kondev J, Theriot J, Garcia HG. 2013. Physical Biology of the Cell New York: Garland Sci, 2nd ed. [Google Scholar]
  52. Frank SA. 2013. Biol. Direct 8:31 [Google Scholar]
  53. Guantes R, Poyatos JF. 2006. PLOS Comput. Biol. 2:e30 [Google Scholar]
  54. Tsai TY, Choi YS, Ma W, Pomerening JR, Tang C, Ferrell JJE. 2008. Science 321:126–29 [Google Scholar]
  55. Gerhart JC, Pardee AB. 1962. J. Biol. Chem. 237:891–96 [Google Scholar]
  56. Monod J, Changeux JP, Jacob F. 1963. J. Mol. Biol. 6:306–29 [Google Scholar]
  57. Monod J, Wyman J, Changeux JP. 1965. J. Mol. Biol. 12:88–118 [Google Scholar]
  58. Changeux J-P. 2012. Annu. Rev. Biophys. 41:103–33 [Google Scholar]
  59. Martins BM, Swain PS. 2011. PLOS Comput. Biol. 7:e1002261 [Google Scholar]
  60. Marzen S, Garcia HG, Phillips R. 2013. J. Mol. Biol. 425:1433–60 [Google Scholar]
  61. Mello BA, Tu Y. 2003. Proc. Natl. Acad. Sci. USA 100:8223–28 [Google Scholar]
  62. Keymer JE, Endres RG, Skoge M, Meir Y, Wingreen NS. 2006. Proc. Natl. Acad. Sci. USA 103:1786–91 [Google Scholar]
  63. Swem LR, Swem DL, Wingreen NS, Bassler BL. 2008. Cell 134:461–73 [Google Scholar]
  64. Mirny LA. 2010. Proc. Natl. Acad. Sci. USA 107:22534–39 [Google Scholar]
  65. Hilser VJ, Wrabl JO, Motlagh HN. 2012. Annu. Rev. Biophys. 41:585–609 [Google Scholar]
  66. Endres RG. 2013. Physical Principles in Sensing and Signaling Oxford, UK: Oxford Univ. Press [Google Scholar]
  67. Koshland J. 1966. Biochemistry 5:365–85 [Google Scholar]
  68. Daber R, Sochor MA, Lewis M. 2011. J. Mol. Biol. 409:76–87 [Google Scholar]
  69. Daber R, Lewis M. 2009. Protein Eng. Des. Sel. 22:673–83 [Google Scholar]
  70. Frost HJ, Ashby MF. 1982. Deformation-Mechanism Maps Oxford, UK: Pergamon Press [Google Scholar]
  71. Schiessel H. 2003. J. Phys. Condens. Matter 15:R699–774 [Google Scholar]
  72. Narula J, Igoshin OA. 2010. IET Syst. Biol. 4:393–408 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031214-014558
Loading
/content/journals/10.1146/annurev-conmatphys-031214-014558
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error