1932

Abstract

Superfluid 3He is an unconventional neutral superfluid in a -wave state with three different superfluid phases, each identified by a unique set of characteristic broken symmetries and nontrivial topology. Despite natural immunity of 3He from defects and impurity of any kind, it has been found that they can be artificially introduced with high-porosity silica aerogel. Furthermore, it has been shown that this modified quantum liquid becomes a superfluid with remarkably sharp thermodynamic transitions from the normal state and between its various phases. These phases include new superfluid phases that are stabilized by anisotropy from uniform strain imposed on the silica aerogel framework, and they include new phenomena in a new class of anisotropic aerogels consisting of nematically ordered alumina strands. The study of superfluid 3He in the presence of correlated, quenched disorder from aerogel serves as a model for understanding the effect of impurities on the symmetry and topology of unconventional superconductors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031218-013134
2019-03-10
2025-06-17
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/10/1/annurev-conmatphys-031218-013134.html?itemId=/content/journals/10.1146/annurev-conmatphys-031218-013134&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Osheroff DD, Richardson RC, Lee DM 1972. Phys. Rev. Lett. 28:885
    [Google Scholar]
  2. 2.  Osheroff DD, Gully WJ, Richardson RC, Lee DM 1972. Phys. Rev. Lett. 29:920
    [Google Scholar]
  3. 3.  Bardeen J, Cooper LN, Schrieffer JR 1957. Phys. Rev. 106:162
    [Google Scholar]
  4. 4.  Gorkov LP 1960. J. Exp. Theoret. Phys. 10:593
    [Google Scholar]
  5. 5.  Abrikosov AA, Gorkov LP 1961. Sov. Phys. J. Exp. Theoret. Phys. 12:1243
    [Google Scholar]
  6. 6.  de Gennes PG 1966. Superconductivity of Metals and Alloys New York: W.A. Benjamin
    [Google Scholar]
  7. 7.  Tsuneto T 1962. On dirty superconductors. Tech. Rep. 47, Inst. Solid State Phys., Univ. Tokyo
    [Google Scholar]
  8. 8.  Dalichaouch Y, de Andrade MC, Gajewski DA, Chau R, Visani P, Maple MB 1995. Phys. Rev. Lett. 75:3938
    [Google Scholar]
  9. 9.  Mackenzie AP, Haselwimmer RKW, Tyler AW, Lonzarich GG, Mori Y et al. 1998. Phys. Rev. Lett. 80:161
    [Google Scholar]
  10. 10.  Porto JV, Parpia JM 1995. Phys. Rev. Lett. 74:4667
    [Google Scholar]
  11. 11.  Sprague DT, Haard TM, Kycia JB, Rand MR, Lee Y et al. 1995. Phys. Rev. Lett. 75:661
    [Google Scholar]
  12. 12.  Matsumoto K, Porto JV, Pollack L, Smith EN, Ho TL, Parpia JM 1997. Phys. Rev. Lett. 79:253
    [Google Scholar]
  13. 13.  Gervais G, Haard TM, Nomura R, Mulders N, Halperin WP 2001. Phys. Rev Lett. 87:035701
    [Google Scholar]
  14. 14.  Gervais G, Yawata K, Mulders N, Halperin WP 2002. Phys. Rev. B 66:054528
    [Google Scholar]
  15. 15.  Thuneberg EV, Yip SK, Fogelström M, Sauls JA 1998. Phys. Rev. Lett. 80:2861
    [Google Scholar]
  16. 16.  Sauls JA, Sharma P 2003. Phys. Rev. B 68:224502
    [Google Scholar]
  17. 17.  Asadchikov VE, Askhadullin RS, Volkov VV, Dmitriev VV, Kitaeva NK et al. 2015. J. Exp. Theoret. Phys. Lett. 101:556
    [Google Scholar]
  18. 18.  Halperin WP, Choi H, Davis JP, Pollanen J 2008. J. Phys. Soc. Jpn. 77:111002
    [Google Scholar]
  19. 19.  Leggett AJ 1972. Phys. Rev. Lett. 29:1227
    [Google Scholar]
  20. 20.  Vvedenskii VL 1972. J. Exp. Theoret. Phys. Lett. 16:254
    [Google Scholar]
  21. 21.  Wheatley JC 1975. Rev. Mod. Phys. 47:415
    [Google Scholar]
  22. 22.  Halperin WP, Archie CN, Rasmussen FB, Alvesalo TA, Richardson RC 1976. Phys. Rev. B 13:2124
    [Google Scholar]
  23. 23.  Alvesalo TA, Collan HK, Loponen MT, Veuro MC 1974. Phys. Rev. Lett 32:981
    [Google Scholar]
  24. 24.  Kojima H, Paulson DN, Wheatley JC 1974. Phys. Rev. Lett. 32:141
    [Google Scholar]
  25. 25.  Yanof AW, Reppy JD 1974. Phys. Rev. Lett. 33:631
    [Google Scholar]
  26. 26.  Vollhardt D, Wölfle P 1990. The Superfluid Phases of Helium 3 London: Taylor & Francis
    [Google Scholar]
  27. 27.  Lee Y, Halperin WP 2017. J. Low Temp. Phys. 189:1
    [Google Scholar]
  28. 28.  Anderson PW, Morel P 1961. Phys. Rev. Lett. 123:1911
    [Google Scholar]
  29. 29.  Balian R, Werthamer NR 1963. Phys. Rev. 131:1553
    [Google Scholar]
  30. 30.  Vdovin YA 1963. Application of Methods of Quantum Field Theory to Problems of Many Particles AI Alekseyeva94109 Moscow: GOS ATOM ISDAT (in Russian)
    [Google Scholar]
  31. 31.  Lee Y, Haard T, Halperin WP, Sauls JA 1999. Nature 400:431
    [Google Scholar]
  32. 32.  Aoyama K, Ikeda R 2006. Phys. Rev. B 73:060504(R)
    [Google Scholar]
  33. 33.  Dmitriev VV, Senin AA, Soldatov AA, Yudin AN 2015. Phys. Rev. Lett. 115:165304
    [Google Scholar]
  34. 34.  Haard TM, Gervais G, Nomura R, Halperin WP 2000. Physica B 284:289
    [Google Scholar]
  35. 35.  Haard TM 2001. NMR study of the magnetization of superfluid 3He-B and NMR of superfluid 3He in aerogel PhD Thesis, Northwestern Univ., Evanston, Illinois
    [Google Scholar]
  36. 36.  Li JIA, Pollanen J, Zimmerman AM, Collett CA, Gannon WJ, Halperin WP 2013. Nat. Phys. 9:775
    [Google Scholar]
  37. 37.  Fricke J 1988. Sci. Am. 258:92
    [Google Scholar]
  38. 38.  Pollanen J, Shirer KR, Blinstein S, Davis JP, Choi H et al. 2008. J. Non-Crystalline Solids 354:4668
    [Google Scholar]
  39. 39.  Teichner SJ 1985. Aerogels: Proceedings of the First International Symposium, Würzburg, Fed. Rep. of Germany, September 23–25 1 J Fricke2230 Berlin: Springer:
    [Google Scholar]
  40. 40.  Bhupathi P, Hwang J, Martin RM, Blankstein J, Jaworski L et al. 2009. Opt. Express 17:10599
    [Google Scholar]
  41. 41.  Porto JV, Parpia JM 1999. Phys. Rev. B 59:14583
    [Google Scholar]
  42. 42.  Sharma P, Sauls JA 2003. Physica B 329:113
    [Google Scholar]
  43. 43.  Sauls JA, Bunkov YM, Collin E, Godfrin H, Sharma P 2005. Phys. Rev. B 72:024507
    [Google Scholar]
  44. 44.  Zimmerman AM, Specht MG, Ginzburg D, Pollanen J, Li JIA et al. 2013. J. Low Temp. Phys. 171:745
    [Google Scholar]
  45. 45.  Li JIA, Zimmerman AM, Pollanen J, Collett CA, Halperin WP 2015. Phys. Rev. Lett. 114:105302
    [Google Scholar]
  46. 46.  Lee JA, Mounce AM, Oh S, Zimmerman AM, Halperin WP 2014. Phys. Rev. B 90:174501
    [Google Scholar]
  47. 47.  Dmitriev VV, Melnikovsky LA, Senina AA, Soldatova AA, Yudina AN 2015. J. Exp. Theoret. Phys. Lett. 101:808
    [Google Scholar]
  48. 48.  Pollanen J, Li JIA, Collett CA, Gannon WJ, Halperin WP 2011. Phys. Rev. Lett. 107:195301
    [Google Scholar]
  49. 49.  Choi H, Yawata K, Haard TM, Davis JP, Gervais G et al. 2004. Phys. Rev. Lett. 93:145301
    [Google Scholar]
  50. 50.  Ali S, Zhang L, Sauls JA 2011. J. Low Temp. Phys. 162:233
    [Google Scholar]
  51. 51.  Sharma P 2003. Theoretical study of 3He in aerogel PhD Thesis, Northwestern Univ., Evanston, Illinois
    [Google Scholar]
  52. 52.  Leggett AJ 1975. Rev. Mod. Phys. 47:331
    [Google Scholar]
  53. 53.  Brinkman WF, Smith H 1975. Phys. Lett. 51:449
    [Google Scholar]
  54. 54.  Baumgardner JE, Osheroff DD 2004. Phys. Rev. Lett. 93:155301
    [Google Scholar]
  55. 55.  Zimmerman AM, Nguyen MD, Halperin WP 2018. arXiv:1808.07943 [cond-mat.supr-con]
  56. 56.  Pollanen J, Li JIA, Collett CA, Gannon WJ, Halperin WP 2012. Nat. Phys. 8:317
    [Google Scholar]
  57. 57.  Fisher SN, Guénault AM, Hale AJ, Pickett GR 2003. Phys. Rev. Lett. 91:105303
    [Google Scholar]
  58. 58.  Volovik GE 1996. J. Exp. Theoret. Phys. Lett. 63:301
    [Google Scholar]
  59. 59.  Larkin AI 1970. J. Exp. Theoret. Phys. 31:784
    [Google Scholar]
  60. 60.  Imry Y, Ma S 1975. Phys. Rev. Lett. 35:1399
    [Google Scholar]
  61. 61.  Elbs J, Bunkov YM, Collin E, Godfrin H 2008. Phys. Rev. Lett. 100:215304
    [Google Scholar]
  62. 62.  Dmitriev VV, Krasnikhin DA, Mulders N, Senin AA, Volovik GE, Yudin AN 2010. J. Exp. Theoret. Phys. Lett. 91:599
    [Google Scholar]
  63. 63.  Li JIA, Zimmerman AM, Pollanen J, Collett CA, Gannon WJ, Halperin WP 2014. Phys. Rev. Lett. 112:115303
    [Google Scholar]
  64. 64.  Davis JP, Choi H, Pollanen J, Halperin WP 2006. 24th International Conference on Low Temperature Physics Y Takano, SP Hershfield, SO Hill PJ Hirschfeld, AM Goldman AIP Conf. Proc. 85023940 Melville, NY: AIP
    [Google Scholar]
  65. 65.  Davis JP, Pollanen J, Reddy B, Shirer KR, Choi H, Halperin WP 2008. Phys. Rev. B 77:140502
    [Google Scholar]
  66. 66.  Sauls JA 2016. Physics 9:148
    [Google Scholar]
  67. 67.  Sauls JA 2013. Phys. Rev. B 88:214503
    [Google Scholar]
  68. 68.  Li JIA, Zimmerman AM, Pollanen J, Collett CA, Gannon WJ, Halperin WP 2014. J. Low Temp. Phys. 175:31
    [Google Scholar]
  69. 69.  Li JIA 2014. Transverse pulsed NMR of superfluid 3He in aerogel: engineering superfluid states with disorder PhD Thesis, Northwestern Univ., Evanston, Illinois
    [Google Scholar]
  70. 70.  Volovik GE 2006. J. Exp. Theoret. Phys. Lett. 84:533
    [Google Scholar]
  71. 71.  Bennett RG, Zhelev N, Smith EN, Pollanen J, Halperin WP, Parpia JM 2011. Phys. Rev. Lett. 107:235504
    [Google Scholar]
  72. 72.  Zhelev N, Reichl M, Abhilash T, Smith E, Nguyen K et al. 2016. Nat. Commun. 7:2975
    [Google Scholar]
  73. 73.  Volovik GE, Mineev VP 1976. J. Exp. Theoret. Phys. Lett. 24:561
    [Google Scholar]
  74. 74.  Autti S, Dmitriev VV, Mkinen JT, Soldatov AA, Volovik GE et al. 2016. Phys. Rev. Lett. 117:255301
    [Google Scholar]
  75. 75.  Autti S, Dmitriev VV, Mkinen JT, Rysti J, Soldatov AA et al. 2018. Phys. Rev. Lett. 121:025303
    [Google Scholar]
  76. 76.  Mineev VP 2012. Nat. Phys. 8:253
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031218-013134
Loading
/content/journals/10.1146/annurev-conmatphys-031218-013134
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error