1932

Abstract

Strontium titanate is a wide-gap semiconductor avoiding a ferroelectric instability thanks to quantum fluctuations. This proximity leads to strong screening of static Coulomb interaction and paves the way for the emergence of a very dilute metal with extremely mobile carriers at liquid-helium temperature. Upon warming, mobility decreases by several orders of magnitude. Yet, metallicity persists above room temperature even when the apparent mean free path falls below the electron wavelength. The superconducting instability survives at exceptionally low concentrations and beyond the boundaries of Migdal–Eliashberg approximation. An intimate connection between dilute superconductivity and aborted ferroelectricity is widely suspected. In this review, we give a brief account of ongoing research on bulk strontium titanate as an insulator, a metal, and a superconductor.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031218-013144
2019-03-10
2025-04-28
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/10/1/annurev-conmatphys-031218-013144.html?itemId=/content/journals/10.1146/annurev-conmatphys-031218-013144&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Noland JA 1954. Phys. Rev. 94:724
    [Google Scholar]
  2. 2.  Schooley JF, Hosler WR, Cohen ML 1964. Phys. Rev. Lett. 12:474–5
    [Google Scholar]
  3. 3.  Hulm JK, Ashkin D, Deis DW, Jones CK 1970. Prog. Low Temp. Phys. 6:205
    [Google Scholar]
  4. 4.  Bustarret E 2015. Physica C 514:36–45
    [Google Scholar]
  5. 5.  Bednorz JG, Müller KA 1988. Rev. Mod. Phys. 60:585–600
    [Google Scholar]
  6. 6.  Binnig G, Baratoff A, Hoenig HE, Bednorz JG 1980. Phys. Rev. Lett. 45:1352–55
    [Google Scholar]
  7. 7.  Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001. Nature 410:63–64
    [Google Scholar]
  8. 8.  Schooley JF, Hosler WR, Ambler E, Becker JH, Cohen ML et al. 1965. Phys. Rev. Lett. 14:305–7
    [Google Scholar]
  9. 9.  Laughlin RB, Lonzarich GG, Monthoux P, Pines D 2001. Adv. Phys. 50:361–65
    [Google Scholar]
  10. 10.  Gurevich L, Larkin AI, Firsov Y 1962. Sov. Phys. Solid State 4:131
    [Google Scholar]
  11. 11.  Koonce CS, Cohen ML, Schooley JF, Hosler WR, Pfeiffer ER 1967. Phys. Rev. 163:380–90
    [Google Scholar]
  12. 12.  Mattheiss LF 1972. Phys. Rev. B 6:4718–40
    [Google Scholar]
  13. 13.  Uwe H, Yoshizaki R, Sakudo T, Izumi A, Uzumaki T 1985. Jpn. J. Appl. Phys. 24:335–37
    [Google Scholar]
  14. 14.  Lin X, Zhu ZW, Fauqué B, Behnia K 2013. Phys. Rev. X 3:021002
    [Google Scholar]
  15. 15.  Allen SJ, Jalan B, Lee S, Ouellette DG, Khalsa G et al. 2013. Phys. Rev. B 88:045114
    [Google Scholar]
  16. 16.  Lin X, Bridoux G, Gourgout A, Seyfarth G, Krämer S et al. 2014. Phys. Rev. Lett. 112:207002
    [Google Scholar]
  17. 17.  Takada Y 1980. J. Phys. Soc. Jpn. 49:1267–75
    [Google Scholar]
  18. 18.  Kirzhnits D, Maksimov E, Khomskii D 1973. J. Low Temp. Phys. 10:79
    [Google Scholar]
  19. 19.  Appel J 1969. Phys. Rev. 180:508–16
    [Google Scholar]
  20. 20.  Ohtomo A, Hwang HY 2004. Nature 427:423–26
    [Google Scholar]
  21. 21.  Reyren N et al. 2007. Science 317:1196–99
    [Google Scholar]
  22. 22.  Santander-Syro AF, Copie O, Kondo T, Fortuna F, Pailhès S et al. 2011. Nature 469:189–93
    [Google Scholar]
  23. 23.  Biscaras J, Bergeal N, Kushwaha A, Wolf T, Rastogi A et al. 2010. Nat. Commun. 1:89
    [Google Scholar]
  24. 24.  Müller KA, Burkard H 1979. Phys. Rev. B 19:3593–602
    [Google Scholar]
  25. 25.  Lin X, Gourgout A, Bridoux G, Jomard F, Pourret A et al. 2014. Phys. Rev. B 90:140508(R)
    [Google Scholar]
  26. 26.  Lin X, Rischau CW, van der Beek CJ, Fauqué B, Behnia K 2015. Phys. Rev. B 92:174504
    [Google Scholar]
  27. 27.  Rowley SE, Spalek LJ, Smith RP, Dean MPM Itoh M et al. 2014. Nat. Phys. 10:367–72
    [Google Scholar]
  28. 28.  Edge JM, Kedem Y, Aschauer U, Spaldin NA, Balatsky AV 2015. Phys. Rev. Lett. 115:247002
    [Google Scholar]
  29. 29.  Roussev R, Millis AJ 2003. Phys. Rev. B 67:014105
    [Google Scholar]
  30. 30.  Stucky A, Scheerer GW, Ren Z, Jaccard D, Poumirol J-M et al. 2016. Sci. Rep. 6:37582
    [Google Scholar]
  31. 31.  Rischau CW, Lin X, Grams CP, Finck D, Harms S et al. 2017. Nat. Phys. 13:643–49
    [Google Scholar]
  32. 32.  Edwards PP, Sienko MJ 1978. Phys. Rev. B 17:2575–81
    [Google Scholar]
  33. 33.  Behnia K 2015. J. Phys.: Condens. Matter 27:375501
    [Google Scholar]
  34. 34.  Frederikse HPR, Hosler WR, Thurber WR, Babiskin J, Siebenmann PG 1967. Phys. Rev. 158:775–78
    [Google Scholar]
  35. 35.  Wemple SH, Didomenico M Jr., Jayaraman A 1969. Phys. Rev. 180:547–56
    [Google Scholar]
  36. 36.  van der Marel D, van Mechelen JLM, Mazin II 2011. Phys. Rev. B 84:205111
    [Google Scholar]
  37. 37.  Lin X, Fauqué B, Behnia K 2015. Science 349:945–48
    [Google Scholar]
  38. 38.  Lin X et al. 2017. NPJ Quantum Mater. 2:41
    [Google Scholar]
  39. 39.  Hwang HY, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y 2012. Nat. Mater. 11:103–13
    [Google Scholar]
  40. 40.  Zubko AP, Gariglio A, Gabay M, Ghosez P, Triscone JM 2011. Annu. Rev. Condens. Matter Phys. 2:141–65
    [Google Scholar]
  41. 41.  Chandra P, Lonzarich GG, Rowley SE, Scott JF 2017. Rep. Prog. Phys. 80:112502
    [Google Scholar]
  42. 42.  Itoh M, Wang R, Narahara M, Kyomen T 2003. Ferroelectrics 285:3–17
    [Google Scholar]
  43. 43.  Bednorz JG, Müller KA 1984. Phys. Rev. Lett. 52:2289–92
    [Google Scholar]
  44. 44.  Müller KA, Thomas H, eds 1981. Structural Phase Transitions I. Topics in Current Physics Berlin: Springer-Verlag
    [Google Scholar]
  45. 45.  Aschauer U, Spaldin NA 2014. J. Phys.: Condens. Matter 26:122203
    [Google Scholar]
  46. 46.  Feng L, Shiga T, Shiomi J 2015. Appl. Phys. Exp. 8:071501
    [Google Scholar]
  47. 47.  Tadano T, Tsuneyuki S 2015. Phys. Rev. B 92:054301
    [Google Scholar]
  48. 48.  Lytle FW 1964. J. Appl. Phys. 35:2212–15
    [Google Scholar]
  49. 49.  Unoki H, Sakudo T 1967. J. Phys. Soc. Jpn. 23:546–52
    [Google Scholar]
  50. 50.  Fleury PA, Scott JF, Worlock JM 1968. Phys. Rev. Lett. 21:16–19
    [Google Scholar]
  51. 51.  Shirane G, Yamada Y 1969. Phys. Rev. 177:858–63
    [Google Scholar]
  52. 52.  Cowley RA 1996. Philos. Trans. R. Soc. Lond. A 354:2799–814
    [Google Scholar]
  53. 53.  Salje EKH, Gallardo MC, Jiménez J, Romero FJ, del Cerro J 1998. J. Phys.: Condens. Matter 10:5535–43
    [Google Scholar]
  54. 54.  Müller KA, Berlinger V, Capizzi M, Gränicher H 1970. Solid State Commun. 8:549–53
    [Google Scholar]
  55. 55.  Sato M, Soejima Y, Ohama N, Okazaki A, Scheel HJ, Müller KA et al. 1985. Phase Transitions 5:207–18
    [Google Scholar]
  56. 56.  Bäuerle D, Rehwald W 1978. Solid State Commun. 27:1343–46
    [Google Scholar]
  57. 57.  Tao Q, Loret B, Xu B, Yang X, Rischau CW et al. 2016. Phys. Rev. B 94:035111
    [Google Scholar]
  58. 58.  de Lima BS, da Luz MS, Oliveira FS, Alves LMS, dos Santos CAM et al. 2015. Phys. Rev. B 91:045108
    [Google Scholar]
  59. 59.  Smirnova EP, Sotnikov AV, Kunze R, Weihnacht M, Kvyatkovskii OE, Lemanov VV 2005. Solid State Commun. 133:421–25
    [Google Scholar]
  60. 60.  McCalla E, Walter J, Leighton C 2016. Chem. Mater. 28:7973–81
    [Google Scholar]
  61. 61.  Fleury PA, Worlock JM 1968. Phys. Rev. 174:613–23
    [Google Scholar]
  62. 62.  Yamada Y, Shirane G 1969. J. Phys. Soc. Jpn. 26:396–403
    [Google Scholar]
  63. 63.  Uwe H, Sakudo T 1976. Phys. Rev. B 13:271–86
    [Google Scholar]
  64. 64.  Weaver WE 1959. J. Phys. Chem. Solids 11:275–77
    [Google Scholar]
  65. 65.  Cochran W, Cowley RA 1962. J. Phys. Chem. Solids 23:447–50
    [Google Scholar]
  66. 66.  Lemanov VV, Smirnova EP, Syrnikov PP, Tarakanov EA 1996. Phys. Rev. B 54:3151–57
    [Google Scholar]
  67. 67.  Itoh M, Wang R, Inaguma Y, Yamaguchi T, Shan YJ, Nakamura T 1999. Phys. Rev. Lett. 82:3540–43
    [Google Scholar]
  68. 68.  Hemberger J, Lunkenheimer P, Viana R, Bmer R, Loidl A 1995. Phys. Rev. B 52:13159–62
    [Google Scholar]
  69. 69.  Carpenter MA, Howard CJ, Knight KS, Zhang Z 2006. J. Phys.: Condens. Matter 18:10725–49
    [Google Scholar]
  70. 70.  Kleemann W, Albertini A, Kuss M, Lindner R 1997. Ferroelectrics 203:57–74
    [Google Scholar]
  71. 71.  Shigenari T, Abe K, Takemoto T, Sanaka O, Akaike T et al. 2006. Phys. Rev. B 74:174121
    [Google Scholar]
  72. 72.  Bianchi B, Kleemann W, Bednorz JG 1994. J. Phys.: Condens. Matter 6:1229–38
    [Google Scholar]
  73. 73.  Wang YG, Kleemann W, Zhong WL, Zhang L 1998. Phys. Rev. B 57:13343–46
    [Google Scholar]
  74. 74.  Blinc R, Zalar B, Laguta VV, Itoh M 2005. Phys. Rev. Lett. 94:147601
    [Google Scholar]
  75. 75.  Beck H, Meier PF, Thellung A 1974. Phys. Stat. Sol. a 24:11
    [Google Scholar]
  76. 76.  Hehlen B, Pérou AL, Courtens E, Vacher R 1995. Phys. Rev. Lett. 75:2416
    [Google Scholar]
  77. 77.  Koreeda A, Takano R, Saikan S 2007. Phys. Rev. Lett. 99:265502
    [Google Scholar]
  78. 78.  Martelli V, Larrea Jiménez J, Continentino M, Baggio-Saitovitch E, Behnia K 2018. Phys. Rev. Lett. 120:125901
    [Google Scholar]
  79. 79.  Bussmann-Holder A 1997. Phys. Rev. B 56:10762
    [Google Scholar]
  80. 80.  Frederikse HPR, Thurber WR, Hosler WR 1964. Phys. Rev. 134:A442–45
    [Google Scholar]
  81. 81.  Tufte ON, Chapman P 1967. Phys. Rev. 155:796
    [Google Scholar]
  82. 82.  Baratoff A, Binnig G 1981. Physica B+C 108:1335–36
    [Google Scholar]
  83. 83.  Verma A, Kajdos AP, Cain TA, Stemmer S, Jena D 2014. Phys. Rev. Lett. 112:216601
    [Google Scholar]
  84. 84.  Himmetoglu B, Janotti A, Peelaers H, Alkauskas A, van de Walle CG 2014. Phys. Rev. B 90:241204(R)
    [Google Scholar]
  85. 85.  Mikheev E, Himmetogiu B, Kajdos AP, Moetakef P, Cain TA et al. 2015. Appl. Phys. Lett. 106:062102
    [Google Scholar]
  86. 86.  Yamanouchi C, Mizuguchi K, Sasaki WJ 1967. Phys. Soc. Jpn. 22:859–64
    [Google Scholar]
  87. 87.  Behnia K, Méasson MA, Kopelevich Y 2007. Phys. Rev. Lett. 98:166602
    [Google Scholar]
  88. 88.  Zhu Z, Yang H, Fauqué B, Kopelevich Y, Behnia K 2010. Nat. Phys. 6:26–29
    [Google Scholar]
  89. 89.  Fauqué B, Butch NP, Syers P, Paglione J, Wiedmann S et al. 2013. Phys. Rev. B 87:035133
    [Google Scholar]
  90. 90.  van Mechelen JLM, van der Marel D, Grimaldi C, Kuzmenko AB, Armitage NP et al. 2008. Phys. Rev. Lett. 100:226403
    [Google Scholar]
  91. 91.  Spinelli A, Torija MA, Liu C, Jan C, Leighton C 2010. Phys. Rev. B 81:155110
    [Google Scholar]
  92. 92.  Bhattacharya A, Skinner B, Khalsa G, Suslov AV 2016. Nat. Commun. 7:12974
    [Google Scholar]
  93. 93.  Okuda T, Nakanishi K, Miyasaka S, Tokura T 2001. Phys. Rev. B 63:113104
    [Google Scholar]
  94. 94.  Kadowaki K, Woods SB 1986. Solid State Commun. 58:507
    [Google Scholar]
  95. 95.  Mott NF Metal-Insulator Transitions London: Taylor & Francis
    [Google Scholar]
  96. 96.  Baber WG 1937. Proc. R. Soc. A 158:383
    [Google Scholar]
  97. 97.  Maslov DL, Chubukov AV 2017. Rep. Prog. Phys. 80:026503
    [Google Scholar]
  98. 98.  Epifanov YN, Levanyuk AP, Levanyuk GM 1981. Sov. Phys. Solid State 23:391
    [Google Scholar]
  99. 99.  Hussey NE, Takenaka K, Takagi H 2004. Philos. Mag. 84:2847–64
    [Google Scholar]
  100. 100.  Kolodiazhnyi T, Tachibana M, Kawaji H, Hwang J, Takayama-Muromachi E 2010. Phys. Rev. Lett. 104:147602
    [Google Scholar]
  101. 101.  Allgaier RS, Scanlon WW 1958. Phys. Rev. 111:1029–37
    [Google Scholar]
  102. 102.  Wemple SH 1965. Phys. Rev. 137:A1575
    [Google Scholar]
  103. 103.  Sakai A, Kanno T, Yotsuhashi S, Adachi H, Tokura Y 2009. Jpn. J. Appl. Phys. 48:097002
    [Google Scholar]
  104. 104.  Wemple SH, Jayaraman A, DiDomenico M Jr 1966. Phys. Rev. Lett. 17:142
    [Google Scholar]
  105. 105.  Eagles DM, Georgiev M, Petrova PC 1996. Phys. Rev. B 54:22–25
    [Google Scholar]
  106. 106.  Gervais F, Servoin J-L, Baratoff A, Bednorz JG, Binnig G 1993. Phys. Rev. B 47:8187–94
    [Google Scholar]
  107. 107.  Tainsh RJ, Andrikidis C 1986. Solid State Commun. 60:517
    [Google Scholar]
  108. 108.  Eagles DM 1986. Solid State Commun. 60:521
    [Google Scholar]
  109. 109.  Collignon C, Fauqué B, Cavanna A, Gennser U, Mailly D, Behnia K 2017. Phys. Rev. B 96:224506
    [Google Scholar]
  110. 110.  Noad H, Spanton EM, Nowack KC, Inoue H, Kim M et al. 2016. Phys. Rev. B 94:174516
    [Google Scholar]
  111. 111.  Pfeiffer ER, Schooley JF 1970. J. Low Temp. Phys. 2:333–52
    [Google Scholar]
  112. 112.  Rowley SE, Enderlein C, Ferreira de Oliveira J, Tompsett DA, Saitovitch B et al. 2018. arXiv:1801.08121
  113. 113.  Geballe TH, Kivelson SA 2014. The Proceedings of PWA90: A Lifetime of Emergence P Chandra, P Coleman, G Kotliar, P Ong, D Stein, C Yupp. 127–33. Singapore: World Sci.
    [Google Scholar]
  114. 114.  Fernandes RM, Haraldsen JT, Wölfle P, Balatsky AV 2013. Phys. Rev. B 87:014510
    [Google Scholar]
  115. 115.  Trevisan TV, Schütt M, Fernandes RM 2018. Phys. Rev. B 98:094514
    [Google Scholar]
  116. 116.  Richter C, Boschker H, Dietsche W, Fillis-Tsirakis E, Jany R et al. 2013. Nature 502:528–31
    [Google Scholar]
  117. 117.  Swartz AG, Inoue H, Merz TA, Hikita Y, Raghu S et al. 2018. PNAS 115:1475–80
    [Google Scholar]
  118. 118.  Millis AJ, Sachdev S, Varma CM 1988. Phys. Rev. B 37:4975–86
    [Google Scholar]
  119. 119.  Abrikosov AA 1993. Physica C 214:107–10
    [Google Scholar]
  120. 120.  Radtke RJ, Levin K, Schüttler HB, Norman MR 1993. Phys. Rev. B 48:653–56
    [Google Scholar]
  121. 121.  Tolpygo SK, Lin JY, Gurvitch M, Hou SY, Phillips JM 1996. Phys. Rev. B 53:12454–61
    [Google Scholar]
  122. 122.  Blinkin AA, Derevyanko VV, Dovbnya AN, Sukharevaet TV, Finkel VA, Shlyakhov IN, et al 2006. Phys. Solid State 48:2037–45
    [Google Scholar]
  123. 123.  Fukuzumi Y, Mizuhashi K, Takenaka K, Uchida S 1996. Phys. Rev. Lett. 76:684–87
    [Google Scholar]
  124. 124.  Mackenzie AP, Maeno Y 2003. Rev. Mod. Phys. 75:657–712
    [Google Scholar]
  125. 125.  Shakeripour H, Petrovic C, Taillefer L 2009. New J. Phys. 11:055065
    [Google Scholar]
  126. 126.  Anderson PW 1959. J. Phys. Chem. Solids 11:26–30
    [Google Scholar]
  127. 127.  London F, London H 1935. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 149:71
    [Google Scholar]
  128. 128.  Abrikosov AA 1957. Sov. Phys. J. Exp. Theor. Phys. 5:1442–52
    [Google Scholar]
  129. 129.  Hu C-R 1972. Phys. Rev. B 6:1756
    [Google Scholar]
  130. 130.  Ambler E, Colwell JH, Hosler WR, Schooley JF 1966. Phys. Rev. 148:280
    [Google Scholar]
  131. 131.  Collignon C 2017. De la densité des fluides électroniques dans deux oxydes supraconducteurs PhD Thesis, Université de Sherbrooke & Université Pierre et Marie Curie
    [Google Scholar]
  132. 132.  Homes CC, Dordevic SV, Valla T, Strongin M 2005. Phys. Rev. B 72:134517
    [Google Scholar]
  133. 133.  Thiemann M, Beutel MH, Dressel M, Lee-Hone NR, Broun DM et al. 2018. Phys. Rev. Lett. 120:237002
    [Google Scholar]
  134. 134.  Arce-Gamboa JR, Guzmán-Verri GG 2018. Phys. Rev. Mater 2:104804
    [Google Scholar]
  135. 135.  Kanasugi S, Yanase Y 2018. Phys. Rev. B 98:024521
    [Google Scholar]
  136. 136.  Wölfle P, Balatsky AV 2018. Phys. Rev. B 98:104505
    [Google Scholar]
  137. 137.  Ruhman J, Lee PA 2016. Phys. Rev. B 94:224515
    [Google Scholar]
  138. 138.  Leggett AJ 2011. Annu. Rev. Condens. Matter Phys. 2:11–30
    [Google Scholar]
  139. 139.  Prakash O, Kumar A, Thamizhavel A, Ramakrishnan S 2017. Science 355:52–55
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031218-013144
Loading
/content/journals/10.1146/annurev-conmatphys-031218-013144
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error