1932

Abstract

Cuprates exhibit exceptionally strong superconductivity. To understand why, it is essential to elucidate the nature of the electronic interactions that cause pairing. Superconductivity occurs on the backdrop of several underlying electronic phases, including a doped Mott insulator at low doping, a strange metal at high doping, and an enigmatic pseudogap phase in between—inside which a phase of charge-density wave order appears. In this article, we shed light on the nature of these remarkable phases by focusing on the limit as , where experimental signatures and theoretical statements become sharper. We therefore survey the ground-state properties of cuprates once superconductivity has been removed by the application of a magnetic field and distill their key universal features.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031218-013210
2019-03-10
2025-04-27
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/10/1/annurev-conmatphys-031218-013210.html?itemId=/content/journals/10.1146/annurev-conmatphys-031218-013210&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Collignon C, Badoux S, Afshar SAA, Michon B, Laliberté F et al. 2017. Phys. Rev. B 95:224517
    [Google Scholar]
  2. 2.  Matt CE, Fatuzzo CG, Sassa Y, Månsson M, Fatale S et al. 2015. Phys. Rev. B 92:134524
    [Google Scholar]
  3. 3.  Monthoux P, Pines D, Lonzarich GG 2007. Nature 450:1177–83
    [Google Scholar]
  4. 4.  Taillefer L 2010. Annu. Rev. Condens. Matter Phys. 1:51–70
    [Google Scholar]
  5. 5.  Lebed AG The Physics of Organic Superconductors and Conductors 110 Springer Series in Materials Science pp. 357–418. Heidelberg: Springer. arXiv:0904.0617
    [Google Scholar]
  6. 6.  Armitage NP, Fournier P, Greene RL 2010. Rev. Mod. Phys. 82:2421–87
    [Google Scholar]
  7. 7.  Motoyama EM et al. 2007. Nature 445:186–89
    [Google Scholar]
  8. 8.  Dagan Y et al. 2004. Phys. Rev. Lett. 92:167001
    [Google Scholar]
  9. 9.  Helm T et al. 2009. Phys. Rev. Lett. 103:157002
    [Google Scholar]
  10. 10.  Armitage NP et al. 2002. Phys. Rev. Lett. 88:257001
    [Google Scholar]
  11. 11.  Matsui H et al. 2007. Phys. Rev. B 75:224514
    [Google Scholar]
  12. 12.  Fournier P et al. 1998. Phys. Rev. Lett. 81:4720
    [Google Scholar]
  13. 13.  Jin K et al. 2011. Nature 476:73–75
    [Google Scholar]
  14. 14.  Sarkar T et al. 2017. Phys. Rev. B 96:155449
    [Google Scholar]
  15. 15.  Tafti FF et al. 2014. Phys. Rev. B 90:024519
    [Google Scholar]
  16. 16.  Kyung B et al. 2004. Phys. Rev. Lett. 93:147004
    [Google Scholar]
  17. 17.  Grissonnanche G et al. 2014. Nat. Commun. 5:3280Detected the critical field Hc2 as a sharp drop in the thermal conductivity due to vortex scattering.
    [Google Scholar]
  18. 18.  Kačmarčík J, Vinograd I, Michon B, Rydh A, Demuer A et al. 2018. Phys. Rev. Lett. 112:167002
    [Google Scholar]
  19. 19.  Zhou R et al. 2017. PNAS 114:13148–53
    [Google Scholar]
  20. 20.  Tallon JL et al. 1997. Phys. Rev. Lett. 79:5294–97
    [Google Scholar]
  21. 21.  Badoux S et al. 2016. Nature 531:201–14Found that a loss of carrier density occurs at the pseudogap critical point of YBCO.
    [Google Scholar]
  22. 22.  Proust C et al. 2002. Phys. Rev. Lett. 89:147003
    [Google Scholar]
  23. 23.  Manako T et al. 1992. Phys. Rev. B 46:11019–24
    [Google Scholar]
  24. 24.  Nakamae S et al. 2003. Phys. Rev. B 68:100502
    [Google Scholar]
  25. 25.  Harrison N, Sebastian SE 2012. New J. Phys. 14:095023
    [Google Scholar]
  26. 26.  Hussey NE et al. 2003. Nature 425:814–17Measured a large FS in overdoped Tl2201 by ADMR, which was later confirmed by ARPES and QOs.
    [Google Scholar]
  27. 27.  Platé M et al. 2005. Phys. Rev. Lett. 95:077001
    [Google Scholar]
  28. 28.  Vignolle B et al. 2013. C. R. Phys. 14:39–52
    [Google Scholar]
  29. 29.  Barisic N et al. 2013. Nat. Phys. 9:761–64
    [Google Scholar]
  30. 30.  Vignolle B et al. 2008. Nature 455:952–55
    [Google Scholar]
  31. 31.  Mackenzie AP et al. 1996. Phys. Rev. B 53:5848–55
    [Google Scholar]
  32. 32.  Bangura AF et al. 2010. Phys. Rev. B 82:140501
    [Google Scholar]
  33. 33.  Singh DJ, Pickett WE 1992. Physica C 203:193–99
    [Google Scholar]
  34. 34.  Tranquada JM et al. 1995. Nature 375:561–63
    [Google Scholar]
  35. 35.  Hoffman JE et al. 2002. Science 295:466–69
    [Google Scholar]
  36. 36.  Hanaguri T et al. 2004. Nature 430:1001–5
    [Google Scholar]
  37. 37.  Wise WD et al. 2008. Nat. Phys. 4:696–99
    [Google Scholar]
  38. 38.  Doiron-Leyraud N et al. 2007. Nature 447:565–69Discovered QOs in an underdoped cuprate show that coherent quasiparticles do exist inside the PG phase.
    [Google Scholar]
  39. 39.  LeBoeuf D et al. 2007. Nature 450:533–37Found a negative Hall coefficient to show that the FS is reconstructed by some density-wave order.
    [Google Scholar]
  40. 40.  LeBoeuf D et al. 2011. Phys. Rev. B 83:054506
    [Google Scholar]
  41. 41.  Jaudet C et al. 2008. Phys. Rev. Lett. 100:187005
    [Google Scholar]
  42. 42.  Laliberté F et al. 2011. Nat. Commun. 2:432
    [Google Scholar]
  43. 43.  Doiron-Leyraud N et al. 2015. Nat. Commun. 6:6034
    [Google Scholar]
  44. 44.  Riggs SC et al. 2011. Nat. Phys. 7:332–35
    [Google Scholar]
  45. 45.  Sebastian SE et al. 2010. PNAS 107:6175–79
    [Google Scholar]
  46. 46.  Ramshaw BJ et al. 2015. Science 348:317–20
    [Google Scholar]
  47. 47.  Chang J et al. 2010. Phys. Rev. Lett. 104:057005
    [Google Scholar]
  48. 48.  Wu T et al. 2011. Nature 477:191–94Discovered CDW order by NMR to establish a universal mechanism for FS reconstruction.
    [Google Scholar]
  49. 49.  Wu T, Mayaffre H, Krämer S, Horvatic M, Berthier C et al. 2015. Nat. Commun. 6:6438
    [Google Scholar]
  50. 50.  Blanco-Canosa S et al. 2014. Phys. Rev. B 90:054513
    [Google Scholar]
  51. 51.  Hücker M et al. 2014. Phys. Rev. B 90:054514
    [Google Scholar]
  52. 52.  Wu T, Mayaffre H, Krämer S, Horvatic M, Berthier C et al. 2013. Nat. Commun. 4:2113
    [Google Scholar]
  53. 53.  Laliberté F et al. 2018. Nat. Quantum Mater. 3:11
    [Google Scholar]
  54. 54.  Gerber S et al. 2015. Science 350:949
    [Google Scholar]
  55. 55.  Chang J et al. 2016. Nat. Commun. 7:11494
    [Google Scholar]
  56. 56.  Tabis W et al. 2014. Nat. Commun. 5:5875
    [Google Scholar]
  57. 57.  Croft T et al. 2014. Phys. Rev. B 89:224513
    [Google Scholar]
  58. 58.  Thampy V et al. 2014. Phys. Rev. B 90:100510
    [Google Scholar]
  59. 59.  da Silva Neto E et al. 2014. Science 343:393–96
    [Google Scholar]
  60. 60.  Comin R et al. 2014. Science 343:390–92
    [Google Scholar]
  61. 61.  Comin R et al. 2015. Nat. Mater. 14:796–800
    [Google Scholar]
  62. 61a.  Fujita K, Hamidian MH, Edkins SD, Kim CK, Kohsaka Y et al. 2014. PNAS 111:E3026
    [Google Scholar]
  63. 62.  Doiron-Leyraud N et al. 2013. Phys. Rev. X 3:021019
    [Google Scholar]
  64. 63.  Yao H et al. 2011. Phys. Rev. B 84:012507
    [Google Scholar]
  65. 64.  Marcenat C et al. 2016. Nat. Commun. 6:7927
    [Google Scholar]
  66. 65.  Proust C et al. 2016. PNAS 113:13654–59
    [Google Scholar]
  67. 66.  Badoux S et al. 2016. Phys. Rev. X 6:021004
    [Google Scholar]
  68. 67.  Daou R et al. 2009. Nat. Phys. 5:31–34Found T-linear resistivity and loss of carrier density at the PG critical point of Nd-LSCO.
    [Google Scholar]
  69. 68.  Sebastian SE et al. 2010. Phys. Rev. B 81:140505
    [Google Scholar]
  70. 69.  Grissonnanche G et al. 2016. Phys. Rev. B 93:064513
    [Google Scholar]
  71. 70.  Michon B, Girod C, Badoux S, Kačmarčík J, Ma Q, et al 2018. arXiv:1804.08502 Showed thermodynamic signatures of a QCP in the specific heat: a peak at p* and a TlogT dependence.
  72. 71.  Wade JM et al. 1994. J. Supercond. 7:261–64
    [Google Scholar]
  73. 72.  Horio M, Hauser K, Sassa Y, Mingazheva Z, Sutter D et al. 2018. Phys. Rev. Lett. 121:077004
    [Google Scholar]
  74. 73.  Luo JL et al. 2000. Physica C 341–48:1837–40
    [Google Scholar]
  75. 74.  Loram JW et al. 2000. Physica C 341–48:831–34
    [Google Scholar]
  76. 75.  Hufner S et al. 2008. Rep. Prog. Phys. 71:062501
    [Google Scholar]
  77. 76.  Peets DC et al. 2007. New J. Phys. 9:28
    [Google Scholar]
  78. 77.  Komiya S, Tsukada S 2009. J. Phys. Conf. Ser. 150:052118
    [Google Scholar]
  79. 78.  Momono N et al. 1994. Physica C 233:395–401
    [Google Scholar]
  80. 79.  Walmsley P et al. 2013. Phys. Rev. Lett. 110:257002
    [Google Scholar]
  81. 80.  Löhneysen HV et al. 1994. Phys. Rev. Lett. 72:3262–65
    [Google Scholar]
  82. 81.  Michon B, Ataei A, Bourgeois-Hope P, Collignon C, Li SY et al. 2018. Phys. Rev. X 8:041010
    [Google Scholar]
  83. 82.  Cooper RA et al. 2009. Science 323:603–7Showed that T-linear resistivity persists over an anomalously wide range of doping in LSCO.
    [Google Scholar]
  84. 83.  Segawa K et al. 2004. Phys. Rev. B 69:104521
    [Google Scholar]
  85. 84.  Ando Y et al. 2004. Phys. Rev. Lett. 92:197001
    [Google Scholar]
  86. 85.  Balakirev FF et al. 2003. Nature 424:912–15
    [Google Scholar]
  87. 86.  Balakirev FF et al. 2009. Phys. Rev. Lett. 102:017004
    [Google Scholar]
  88. 87.  Storey J et al. 2016. Europhys. Lett. 113:27003
    [Google Scholar]
  89. 88.  Maharaj AV et al. 2017. Phys. Rev. B 96:045132
    [Google Scholar]
  90. 89.  Behnia K et al. 2004. J. Phys.: Condens. Matter 16:5187–98
    [Google Scholar]
  91. 90.  Daou R et al. 2009. Phys. Rev. B 79:180505
    [Google Scholar]
  92. 91.  Doiron-Leyraud N et al. 2017. Nat. Commun. 8:2044
    [Google Scholar]
  93. 92.  Laliberté F, Tabis W, Badoux S, Vignolle B, Destraz D, et al 2016. arXiv:1606.04491
  94. 93.  Boebinger GS et al. 1996. Phys. Rev. Lett. 77:5417–20Showed that upturn in the resistivity at low temperature reveals a change of electronic ground state near optimal doping.
    [Google Scholar]
  95. 94.  Ando Y et al. 1995. Phys. Rev. Lett. 75:4662–65
    [Google Scholar]
  96. 95.  Scalapino DJ et al. 2012. Rev. Mod. Phys. 84:1383
    [Google Scholar]
  97. 96.  Benhabib S et al. 2015. Phys. Rev. Lett. 114:147001
    [Google Scholar]
  98. 97.  Cyr-Choinière O et al. 2018. Phys. Rev. B 97:064502
    [Google Scholar]
  99. 98.  Fujita K et al. 2014. Science 344:612–16
    [Google Scholar]
  100. 99.  Vilk YM et al. 1997. J. Phys. I France 7:1309–68
    [Google Scholar]
  101. 100.  Gull E et al. 2010. Phys. Rev. B 82:155101
    [Google Scholar]
  102. 101.  Sordi G et al. 2012. Sci. Rep. 2:547
    [Google Scholar]
  103. 102.  Wu W, Scheurer MS, Chatterjee S, Sachdev S, Georges A, Ferrero M 2017. Phys. Rev. X 8:021048
    [Google Scholar]
  104. 103.  Braganca H et al. 2018. Phys. Rev. Lett. 120:067002
    [Google Scholar]
  105. 104.  Scheurer M et al. 2018. PNAS 115:E3665
    [Google Scholar]
  106. 105.  Fauqué B et al. 2006. Phys. Rev. Lett. 96:197001
    [Google Scholar]
  107. 106.  Sato Y et al. 2017. Nat. Phys. 13:1074–78
    [Google Scholar]
  108. 107.  Varma C 2016. Rep. Prog. Phys. 79:082501
    [Google Scholar]
  109. 108.  Nie L et al. 2014. PNAS 111:7980–85
    [Google Scholar]
  110. 109.  Doiron-Leyraud N et al. 2009. Phys. Rev. B 80:214531
    [Google Scholar]
  111. 110.  Hussey NE et al. 2013. J. Phys.: Conf. Ser. 449:012004
    [Google Scholar]
  112. 111.  Abdel-Jawad M et al. 2007. Phys. Rev. Lett. 99:107002
    [Google Scholar]
  113. 112.  Legros A, et al 2018. Nat. Phys. https://doi.org/10.1038/s41567-018-0334-2
    [Google Scholar]
  114. 113.  Zaanen J 2004. Nature 430:512–13
    [Google Scholar]
  115. 114.  Bruin JAN et al. 2013. Science 339:804–7
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031218-013210
Loading
/content/journals/10.1146/annurev-conmatphys-031218-013210
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error