1932

Abstract

Studies of biological systems and materials, together with recent experimental and theoretical advances in colloidal and nanoscale materials, have shown how nonequilibrium forcing can be used to modulate organization in many novel ways. In this review, we focus on how an accounting of energy dissipation, using the tools of stochastic thermodynamics, can constrain and provide intuition for the correlations and configurations that emerge in a nonequilibrium process. We anticipate that the frameworks reviewed here can provide a starting point to address some of the unique phenomenology seen in biophysical systems and potentially replicate them in synthetic materials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031218-013309
2021-03-10
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/12/1/annurev-conmatphys-031218-013309.html?itemId=/content/journals/10.1146/annurev-conmatphys-031218-013309&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Cates ME, Tailleur J 2015. Annu. Rev. Condens. Matter Phys. 6:219–44
    [Google Scholar]
  2. 2. 
    Battle C, Broedersz CP, Fakhri N, Geyer VF, Howard J et al. 2016. Science 352:604–7
    [Google Scholar]
  3. 3. 
    Driscoll M, Delmotte B, Youssef M, Sacanna S, Donev A, Chaikin P 2017. Nat. Phys. 13:375–79
    [Google Scholar]
  4. 4. 
    Corté L, Chaikin PM, Gollub JP, Pine DJ 2008. Nat. Phys. 4:420–24
    [Google Scholar]
  5. 5. 
    Nguyen NHP, Klotsa D, Engel M, Glotzer SC 2014. Phys. Rev. Lett. 112:075701
    [Google Scholar]
  6. 6. 
    Redner GS, Hagan MF, Baskaran A 2013. Phys. Rev. Lett. 110:055701
    [Google Scholar]
  7. 7. 
    Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J et al. 2013. Rev. Mod. Phys. 85:1143–89
    [Google Scholar]
  8. 8. 
    Solon AP, Fily Y, Baskaran A, Cates ME, Kafri Y et al. 2015. Nat. Phys. 11:673–78
    [Google Scholar]
  9. 9. 
    Mann S 2009. Nat. Mater. 8:781–92
    [Google Scholar]
  10. 10. 
    Lan G, Sartori P, Neumann S, Sourjik V, Tu Y 2012. Nat. Phys. 8:422–28
    [Google Scholar]
  11. 11. 
    Lele PP, Hosu BG, Berg HC 2013. PNAS 110:11839–44
    [Google Scholar]
  12. 12. 
    Tu Y 2008. PNAS 105:11737–41
    [Google Scholar]
  13. 13. 
    Hopfield JJ 1974. PNAS 71:4135–39
    [Google Scholar]
  14. 14. 
    Bennett CH 1979. BioSystems 11:85–91
    [Google Scholar]
  15. 15. 
    Mehta P, Schwab DJ 2012. PNAS 109:17978–82
    [Google Scholar]
  16. 16. 
    Tu Y, Shimizu TS, Berg HC 2008. PNAS 105:14855–60
    [Google Scholar]
  17. 17. 
    Wang F, Shi H, He R, Wang R, Zhang R, Yuan J 2017. Nat. Phys. 13:710–14
    [Google Scholar]
  18. 18. 
    Galkin VE, Orlova A, Egelman EH 2012. Curr. Biol. 22:R96–101
    [Google Scholar]
  19. 19. 
    Banerjee S, Gardel ML, Schwarz US 2020. Annu. Rev. Condens. Matter Phys. 11:421–39
    [Google Scholar]
  20. 20. 
    Brugués J, Needleman D 2014. PNAS 111:18496–500
    [Google Scholar]
  21. 21. 
    Hess H, Ross JL 2017. Chem. Soc. Rev. 46:5570–87
    [Google Scholar]
  22. 22. 
    Weirich KL, Dasbiswas K, Witten TA, Vaikuntanathan S, Gardel ML 2019. PNAS 116:11125–30
    [Google Scholar]
  23. 23. 
    Seifert U 2011. Eur. Phys. J. E 34:26
    [Google Scholar]
  24. 24. 
    Fürthauer S, Lemma B, Foster PJ, Ems-McClung SC, Yu CH et al. 2019. Nat. Phys. 15:1295–300
    [Google Scholar]
  25. 25. 
    Murrell M, Oakes PW, Lenz M, Gardel ML 2015. Nat. Rev. Mol. Cell Biol. 16:486–98
    [Google Scholar]
  26. 26. 
    van Esch JH, Klajn R, Otto S 2017. Chem. Soc. Rev. 46:5474–75
    [Google Scholar]
  27. 27. 
    Grzybowski BA, Fitzner K, Paczesny J, Granick S 2017. Chem. Soc. Rev. 46:5647–78
    [Google Scholar]
  28. 28. 
    Klajn R, Bishop KJM, Grzybowski BA 2007. PNAS 104:10305–9
    [Google Scholar]
  29. 29. 
    Lucas LN, van Esch J, Kellogg RM, Feringa BL 2001. Chem. Commun. 2001:759–60
    [Google Scholar]
  30. 30. 
    de Jong JJD, Hania PR, Pugžlys A, Lucas LN, de Loos M et al. 2005. Angew. Chem. Int. Ed. 44:2373–76
    [Google Scholar]
  31. 31. 
    Jha PK, Kuzovkov V, Grzybowski BA, Olvera de la Cruz M 2012. Soft Matter 8:227–34
    [Google Scholar]
  32. 32. 
    Palacci J, Sacanna S, Steinberg AP, Pine DJ, Chaikin PM 2013. Science 339:936–40
    [Google Scholar]
  33. 33. 
    Schwarz-Linek J, Valeriani C, Cacciuto A, Cates ME, Marenduzzo D et al. 2012. PNAS 109:4052–57
    [Google Scholar]
  34. 34. 
    Shankar S, Bowick MJ, Marchetti MC 2017. Phys. Rev. X 7:031039
    [Google Scholar]
  35. 35. 
    Kokot G, Piet D, Whitesides GM, Aranson IS, Snezhko A 2015. Sci. Rep. 5:9528
    [Google Scholar]
  36. 36. 
    Yan J, Han M, Zhang J, Xu C, Luijten E, Granick S 2016. Nat. Mater. 15:1095–99
    [Google Scholar]
  37. 37. 
    Minkenberg CB, Florusse L, Eelkema R, Koper GJM, van Esch JH 2009. J. Am. Chem. Soc. 131:11274–75
    [Google Scholar]
  38. 38. 
    Surrey T, Nédélec F, Leibler S, Karsenti E 2001. Science 292:1167–71
    [Google Scholar]
  39. 39. 
    Sue ACH, Mannige RV, Deng H, Cao D, Wang C et al. 2015. PNAS 112:5591–96
    [Google Scholar]
  40. 40. 
    Arango-Restrepo A, Barragán D, Rubi JM 2018. Phys. Chem. Chem. Phys. 20:4699–707
    [Google Scholar]
  41. 41. 
    Al-Ghoul M, Sultan R 2001. J. Phys. Chem. A 105:8053–58
    [Google Scholar]
  42. 42. 
    Nguyen M, Vaikuntanathan S 2016. PNAS 113:14231–36
    [Google Scholar]
  43. 43. 
    Nguyen M, Vaikuntanathan S 2018. Phys. Rev. E arXiv:1803.04368 [cond-mat.soft]
    [Google Scholar]
  44. 44. 
    del Junco C, Tociu L, Vaikuntanathan S 2018. PNAS 115:3569–74
    [Google Scholar]
  45. 45. 
    del Junco C, Vaikuntanathan S 2019. J. Chem. Phys. 150:094708
    [Google Scholar]
  46. 46. 
    Tociu L, Fodor E, Nemoto T, Vaikuntanathan S 2019. Phys. Rev. X 9:041026
    [Google Scholar]
  47. 47. 
    Murugan A, Vaikuntanathan S 2017. Nat. Commun. 8:13881
    [Google Scholar]
  48. 48. 
    Dasbiswas K, Mandadapu KK, Vaikuntanathan S 2018. PNAS 115:E9031–40
    [Google Scholar]
  49. 49. 
    Fleming GR, Ratner MA 2008. Phys. Today 61:28–33
    [Google Scholar]
  50. 50. 
    Whitesides GM, Grzybowski B 2002. Science 295:2418–21
    [Google Scholar]
  51. 51. 
    Seifert U 2011. Phys. Rev. Lett. 106:020601
    [Google Scholar]
  52. 52. 
    Esposito M, Van den Broeck C 2010. Phys. Rev. E 82:011143
    [Google Scholar]
  53. 53. 
    Seifert U 2012. Rep. Prog. Phys. 75:126001
    [Google Scholar]
  54. 54. 
    Fodor É, Nardini C, Cates ME, Tailleur J, Visco P, van Wijland F 2016. Phys. Rev. Lett. 117:38103
    [Google Scholar]
  55. 55. 
    Whitelam S, Schulman R, Hedges L 2012. Phys. Rev. Lett. 109:265506
    [Google Scholar]
  56. 56. 
    Whitelam S, Hedges LO, Schmit JD 2014. Phys. Rev. Lett. 112:155504
    [Google Scholar]
  57. 57. 
    Barato AC, Seifert U 2015. Phys. Rev. Lett. 114:158101
    [Google Scholar]
  58. 58. 
    Gingrich TR, Horowitz JM, Perunov N, England JL 2016. Phys. Rev. Lett. 116:120601
    [Google Scholar]
  59. 59. 
    Touchette H 2009. Phys. Rep. 478:1–69
    [Google Scholar]
  60. 60. 
    Ke Y, Ong LL, Shih WM, Yin P 2012. Science 338:1177–83
    [Google Scholar]
  61. 61. 
    Jones MR, Seeman NC, Mirkin CA 2015. Science 347:1260901
    [Google Scholar]
  62. 62. 
    Reinhardt A, Frenkel D 2014. Phys. Rev. Lett. 112:238103
    [Google Scholar]
  63. 63. 
    Hedges LO, Mannige RV, Whitelam S 2014. Soft Matter 10:6404–16
    [Google Scholar]
  64. 64. 
    Glotzer SC 2012. Nature 481:450–52
    [Google Scholar]
  65. 65. 
    Mao X, Chen Q, Granick S 2013. Nat. Mater. 12:217–22
    [Google Scholar]
  66. 66. 
    Miller WL, Cacciuto A 2009. Phys. Rev. E 80:021404
    [Google Scholar]
  67. 67. 
    Glotzer SC, Solomon MJ 2007. Nat. Mater. 6:557–62
    [Google Scholar]
  68. 68. 
    Whitelam S 2010. J. Chem. Phys. 132:194901
    [Google Scholar]
  69. 69. 
    Hormoz S, Brenner MP 2011. PNAS 108:5193–98
    [Google Scholar]
  70. 70. 
    Jarzynski C 2011. Annu. Rev. Condens. Matter Phys. 2:329–51
    [Google Scholar]
  71. 71. 
    Doi M 2011. J. Phys.: Condens. Matter 23:284118
    [Google Scholar]
  72. 72. 
    Falzone TT, Lenz M, Kovar DR, Gardel ML 2012. Nat. Commun. 3:861
    [Google Scholar]
  73. 73. 
    Ruiz-Herrero T, Fai TG, Mahadevan L 2019. Phys. Rev. Lett. 123:038102
    [Google Scholar]
  74. 74. 
    Lenz M, Witten TA 2017. Nat. Phys. 13:1100–4
    [Google Scholar]
  75. 75. 
    Andrieux D, Gaspard P 2008. PNAS 105:9516–21
    [Google Scholar]
  76. 76. 
    Schnakenberg J 1976. Rev. Mod. Phys. 48:571–85
    [Google Scholar]
  77. 77. 
    Andrieux D, Gaspard P 2007. J. Stat. Phys. 127:107–31
    [Google Scholar]
  78. 78. 
    Gaspard P, Andrieux D 2014. J. Chem. Phys. 141:044908
    [Google Scholar]
  79. 79. 
    Sartori P, Pigolotti S 2015. Phys. Rev. X 5:041039
    [Google Scholar]
  80. 80. 
    Poulton JM, ten Wolde PR, Ouldridge TE 2019. PNAS 116:1946–51
    [Google Scholar]
  81. 81. 
    de Groot SR, Mazur PP 1984. Non-Equilibrium Thermodynamics New York: Dover
    [Google Scholar]
  82. 82. 
    Pietzonka P, Ritort F, Seifert U 2017. Phys. Rev. E 96:012101
    [Google Scholar]
  83. 83. 
    Horowitz JM, Gingrich TR 2017. Phys. Rev. E 96:020103
    [Google Scholar]
  84. 84. 
    Koyuk T, Seifert U 2019. Phys. Rev. Lett. 122:230601
    [Google Scholar]
  85. 85. 
    Barato AC, Chetrite R, Faggionato A, Gabrielli D 2018. N. J. Phys. 20:103023
    [Google Scholar]
  86. 86. 
    Gingrich TR, Horowitz JM 2017. Phys. Rev. Lett. 119:170601
    [Google Scholar]
  87. 87. 
    McMahon HT, Gallop JL 2005. Nature 438:590–96
    [Google Scholar]
  88. 88. 
    Gowrishankar K, Ghosh S, Saha S, Rumamol C, Mayor S, Rao M 2012. Cell 149:1353–67
    [Google Scholar]
  89. 89. 
    Stachowiak JC, Schmid EM, Ryan CJ, Ann HS, Sasaki DY et al. 2012. Nat. Cell Biol. 14:944–49
    [Google Scholar]
  90. 90. 
    Chen Z, Atefi E, Baumgart T 2016. Biophys. J. 111:1823–26
    [Google Scholar]
  91. 91. 
    Turlier H, Fedosov DA, Audoly B, Auth T, Gov NS et al. 2016. Nat. Phys. 12:513–20
    [Google Scholar]
  92. 92. 
    Solon J, Pécréaux J, Girard P, Fauré MC, Prost J, Bassereau P 2006. Phys. Rev. Lett. 97:3–6
    [Google Scholar]
  93. 93. 
    Dervaux J, Noireaux V, Libchaber AJ 2017. Eur. Phys. J. Plus 132:284
    [Google Scholar]
  94. 94. 
    Rao M, Sarasij RC 2001. Phys. Rev. Lett. 87:128101
    [Google Scholar]
  95. 95. 
    Fily Y, Marchetti MC 2012. Phys. Rev. Lett. 108:235702
    [Google Scholar]
  96. 96. 
    Mallory SA, Cacciuto A 2016. Phys. Rev. E 94:022607
    [Google Scholar]
  97. 97. 
    Mallory SA, Valeriani C, Cacciuto A 2018. Annu. Rev. Phys. Chem. 69:59–79
    [Google Scholar]
  98. 98. 
    Han M, Yan J, Granick S, Luijten E 2017. PNAS 114:7513–18
    [Google Scholar]
  99. 99. 
    Yan J, Bae SC, Granick S 2015. Soft Matter 11:147–53
    [Google Scholar]
  100. 100. 
    Yan J, Bloom M, Bae SC, Luijten E, Granick S 2012. Nature 491:578–81
    [Google Scholar]
  101. 101. 
    Mallory SA, Cacciuto A 2019. J. Am. Chem. Soc. 141:2500–7
    [Google Scholar]
  102. 102. 
    Joshi A, Putzig E, Baskaran A, Hagan MF 2019. Soft Matter 15:94–101
    [Google Scholar]
  103. 103. 
    Solon AP, Stenhammar J, Wittkowski R, Kardar M, Kafri Y et al. 2015. Phys. Rev. Lett. 114:198301
    [Google Scholar]
  104. 104. 
    Takatori SC, Brady JF 2015. Phys. Rev. E 91:032117
    [Google Scholar]
  105. 105. 
    Solon AP, Stenhammar J, Cates ME, Kafri Y, Tailleur J 2018. N. J. Phys. 20:075001
    [Google Scholar]
  106. 106. 
    Cagnetta F, Corberi F, Gonnella G, Suma A 2017. Phys. Rev. Lett. 119:158002
    [Google Scholar]
  107. 107. 
    Fodor É, Nemoto T, Vaikuntanathan S 2020. N. J. Phys. 22:013052
    [Google Scholar]
  108. 108. 
    Nemoto T, Fodor E, Cates ME, Jack RL, Tailleur J 2019. Phys. Rev. E 99:022605
    [Google Scholar]
  109. 109. 
    Garrahan JP, Jack RL, Lecomte V, Pitard E, van Duijvendijk K, van Wijland F 2007. Phys. Rev. Lett. 98:195702
    [Google Scholar]
  110. 110. 
    Hedges LO, Jack RL, Garrahan JP, Chandler D 2009. Science 323:1309–13
    [Google Scholar]
  111. 111. 
    Pitard E, Lecomte V, van Wijland F 2011. Europhys. Lett. 96:56002
    [Google Scholar]
  112. 112. 
    Speck T, Engel A, Seifert U 2012. J. Stat. Mech.: Theory Exp. 2012:P12001
    [Google Scholar]
  113. 113. 
    Chetrite R, Touchette H 2013. Phys. Rev. Lett. 111:120601
    [Google Scholar]
  114. 114. 
    Jack RL, Sollich P 2010. Prog. Theor. Phys. Suppl. 184:304–17
    [Google Scholar]
  115. 115. 
    Gardiner CW 1985. Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences Berlin/Heidelberg: Springer. 2nd ed.
    [Google Scholar]
  116. 116. 
    Speck T, Malins A, Royall CP 2012. Phys. Rev. Lett. 109:195703
    [Google Scholar]
  117. 117. 
    Bodineau T, Lecomte V, Toninelli C 2012. J. Stat. Phys. 147:1–17
    [Google Scholar]
  118. 118. 
    Limmer DT, Chandler D 2014. PNAS 111:9413–18
    [Google Scholar]
  119. 119. 
    Nemoto T, Hidalgo EG, Lecomte V 2017. Phys. Rev. E 95:012102
    [Google Scholar]
  120. 120. 
    Tailleur J, Kurchan J 2007. Nat. Phys. 3:203–7
    [Google Scholar]
  121. 121. 
    Laffargue T, Thu-Lam KDN, Kurchan J, Tailleur J 2013. J. Phys. A: Math. Theor. 46:254002
    [Google Scholar]
  122. 122. 
    Whitelam S, Klymko K, Mandal D 2018. J. Chem. Phys. 148:154902
    [Google Scholar]
  123. 123. 
    Giardinà C, Kurchan J, Peliti L 2006. Phys. Rev. Lett. 96:120603
    [Google Scholar]
  124. 124. 
    Hurtado PI, Garrido PL 2009. Phys. Rev. Lett. 102:250601
    [Google Scholar]
  125. 125. 
    Nemoto T, Bouchet F, Jack RL, Lecomte V 2016. Phys. Rev. E 93:062123
    [Google Scholar]
  126. 126. 
    Ray U, Chan GKL, Limmer DT 2018. Phys. Rev. Lett. 120:210602
    [Google Scholar]
  127. 127. 
    Klymko K, Geissler PL, Garrahan JP, Whitelam S 2018. Phys. Rev. E 97:032123
    [Google Scholar]
  128. 128. 
    Brewer T, Clark SR, Bradford R, Jack RL 2018. J. Stat. Mech.: Theory Exp. 2018:053204
    [Google Scholar]
  129. 129. 
    Jack RL 2020. Eur. Phys. J. B 93:74
    [Google Scholar]
  130. 130. 
    Lumsdon SO, Kaler EW, Velev OD 2004. Langmuir 20:2108–16
    [Google Scholar]
  131. 131. 
    Singh JP, Lele PP, Nettesheim F, Wagner NJ, Furst EM 2009. Phys. Rev. E 79:050401
    [Google Scholar]
  132. 132. 
    Tagliazucchi M, Weiss EA, Szleifer I 2014. PNAS 111:9751–56
    [Google Scholar]
  133. 133. 
    Helbing D, Farkas IJ, Vicsek T 2000. Phys. Rev. Lett. 84:1240–43
    [Google Scholar]
  134. 134. 
    Stanley HE 2000. Nature 404:718–19
    [Google Scholar]
  135. 135. 
    Rogers WB, Shih WM, Manoharan VN 2016. Nat. Rev. Mater. 1:16008
    [Google Scholar]
  136. 136. 
    Zeravcic Z, Manoharan VN, Brenner MP 2017. Rev. Mod. Phys. 89:031001
    [Google Scholar]
  137. 137. 
    Scarlett RT, Ung MT, Crocker JC, Sinno T 2011. Soft Matter 7:1912–25
    [Google Scholar]
  138. 138. 
    Tkachenko AV 2011. Phys. Rev. Lett. 106:255501
    [Google Scholar]
  139. 139. 
    Zhang Z, Glotzer SC 2004. Nano Lett. 4:1407–13
    [Google Scholar]
  140. 140. 
    Jacobs WM, Reinhardt A, Frenkel D 2015. PNAS 112:6313–18
    [Google Scholar]
  141. 141. 
    Ramakrishnan N, Ipsen JH, Rao M, Kumar PBS 2015. Soft Matter 11:2387–93
    [Google Scholar]
  142. 142. 
    Freedman SL, Suarez C, Winkelman JD, Kovar DR, Voth GA et al. 2019. PNAS 116:16192–97
    [Google Scholar]
  143. 143. 
    Zhang J, Luijten E, Grzybowski BA, Granick S 2017. Chem. Soc. Rev. 46:5551–69
    [Google Scholar]
  144. 144. 
    GrandPre T, Klymko K, Mandadapu KK, Limmer DT 2020. arXiv:2007.12149 [cond-mat.stat-mech]
  145. 145. 
    Bisker G, England JL 2018. PNAS 115:E10531–38
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031218-013309
Loading
/content/journals/10.1146/annurev-conmatphys-031218-013309
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error