1932

Abstract

The solar–to–chemical energy conversion of Earth-abundant resources like water or greenhouse gas pollutants like CO promises an alternate energy source that is clean, renewable, and environmentally friendly. The eventual large-scale application of such photo-based energy conversion devices can be realized through the discovery of novel photocatalytic materials that are efficient, selective, and robust. In the past decade, the Materials Genome Initiative has led to a major leap in the development of materials databases, both computational and experimental. Hundreds of photocatalysts have recently been discovered for various chemical reactions, such as water splitting and carbon dioxide reduction, employing these databases and/or data informatics, machine learning, and high-throughput computational and experimental methods. In this article, we review these data-driven photocatalyst discoveries, emphasizing the methods and techniques developed in the last few years to determine the (photo)electrochemical stability of photocatalysts, leading to the discovery of photocatalysts that remain robust and durable under operational conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031620-100957
2023-03-10
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/14/1/annurev-conmatphys-031620-100957.html?itemId=/content/journals/10.1146/annurev-conmatphys-031620-100957&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Fujishima A, Honda K. 1972. Nature 238:53583738
  2. 2.
    Katz JE, Gingrich TR, Santori EA, Lewis NS. 2009. Energy Environ. Sci. 2:10312
  3. 3.
    Sivula K, Van De Krol R. 2016. Nat. Rev. Mater. 1:215010
  4. 4.
    Cui Z, Zeng D, Tang T, Liu J, Xie C. 2010. J. Hazard. Mater. 183:1–321117
  5. 5.
    Maschmeyer T, Che M 2010. Angew. Chem. Int. Ed. 49:9153639
  6. 6.
    Zhao ZG, Miyauchi M. 2008. Angew. Chem. Int. Ed. 47:37705155
  7. 7.
    Zhou L, Wang W, Xu H, Sun S, Shang M. 2009. Chem. Eur. J. 15:7177682
  8. 8.
    Ikeda M, Kusumoto Y, Somekawa S, Ngweniform P, Ahmmad B. 2006. J. Photochem. Photobiol. A 184:330612
  9. 9.
    Jaramillo TF, Baeck SH, Kleiman-Shwarsctein A, McFarland EW. 2004. Macromol. Rapid Commun. 25:1297301
  10. 10.
    Qiu Y, Yang M, Fan H, Zuo Y, Shao Y et al. 2011. CrystEngComm 13:6184350
  11. 11.
    Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. 2013. Angew. Chem. Int. Ed. 52:297372408
  12. 12.
    Shinde A, Suram SK, Yan Q, Zhou L, Singh AK et al. 2017. ACS Energy Lett. 2:10230712
  13. 13.
    Yan Q, Yu J, Suram SK, Zhou L, Shinde A et al. 2017. PNAS 114:12304043
  14. 14.
    Xiong Y, Campbell QT, Fanghanel J, Badding CK, Wang H et al. 2021. Energy Environ. Sci. 14:4233548
  15. 15.
    Wang Z, Zhang H, Li J. 2021. Nano Energy 81:105655
  16. 16.
    Singh AK, Montoya JH, Gregoire JM, Persson KA. 2019. Nat. Commun. 10:443
  17. 17.
    Singh AK, Mathew K, Zhuang HL, Hennig RG. 2015. J. Phys. Chem. Lett. 6:6108798
  18. 18.
    Sawada K, Nakajima T 2018. APL Mater. 6:101103
  19. 19.
    Jain A, Wang Z, Nørskov JK. 2019. ACS Energy Lett. 4:6141011
  20. 20.
    Zhou L, Shinde A, Guevarra D, Richter MH, Stein HS et al. 2020. J. Mater. Chem. A 8:8423943
  21. 21.
    Torrisi SB, Singh AK, Montoya JH, Biswas T, Persson KA. 2020. npj 2D Mater. Appl. 4:24
  22. 22.
    Hydrog. Fuel Cell Technol. Off. 2014. Multi-year research, development, and demonstration plan Res. Rep., Off. Energy Effic. Renew. Energy Washington, DC: https://www.energy.gov/eere/fuelcells/downloads/hydrogen-and-fuel-cell-technologies-office-multi-year-research-development
  23. 23.
    Zhou M, Lou XW, Xie Y. 2013. Nano Today 8:6598618
  24. 24.
    Abe R 2010. J. Photochem. Photobiol. C 11:4179209
  25. 25.
    Ni M, Leung MKH, Leung DYC, Sumathy K. 2007. Renew. Sustain. Energy Rev. 11:340125
  26. 26.
    Basic Energy Sci. Roundtable Liq. Solar Fuels Panel. 2019. Report of the Basic Energy Sciences Roundtable on Liquid Solar Fuels Final Rep., Off. Sci. Basic Energy Sci., US Dep. Energy Washington, DC: https://science.osti.gov/-/media/bes/pdf/reports/2020/Liquid_Solar_Fuels_Report.pdf?la=en&hash=06D037C1887D2FF8B872035E4C51FFDDEC11D4C8
  27. 27.
    Siahrostami S, Villegas SJ, Bagherzadeh Mostaghimi AH, Back S, Farimani AB et al. 2020. ACS Catal. 10:147495511
  28. 28.
    Rajan AG, Martirez JMP, Carter EA. 2020. ACS Catal. 10:1911177234
  29. 29.
    Zhou L, Shinde A, Guevarra D, Haber JA, Persson KA et al. 2020. ACS Energy Lett. 5:5141321
  30. 30.
    Hoye RL, Schulz P, Schelhas LT, Holder AM, Stone KH et al. 2017. Chem. Mater. 29:5196488
  31. 31.
    Stein HS, Gregoire JM. 2019. Chem. Sci. 10:42964049
  32. 32.
    Jain A, Montoya J, Dwaraknath S, Zimmermann NE, Dagdelen J et al. 2020. Handbook of Materials Modeling: Methods, Theory and Modeling W Andreoni, S Yip 175184. Cham, Switz: Springer
  33. 33.
    Pan J, Yan Q 2018. J. Semicond. 39:071001
  34. 34.
    Holby EF, Wang G, Zelenay P. 2020. ACS Catal. 10:241452739
  35. 35.
    White A. 2012. MRS Bull. 37:871516
  36. 36.
    Jain A, Ong SP, Hautier G, Chen W, Richards WD et al. 2013. APL Mater. 1:011002
  37. 37.
    Curtarolo S, Setyawan W, Wang S, Xue J, Yang K et al. 2012. Comput. Mater. Sci. 58:22735
  38. 38.
    Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C. 2013. JOM 65:1115019
  39. 39.
    Verduzco Gastelum JC, Strachan A. 2021. Citrine tools for materials informatics Software Package, nanoHub. https://doi/org/10.21981/DRKB-XX94
  40. 40.
    Gražulis S, Chateigner D, Downs RT, Yokochi A, Quirós M et al. 2009. J. Appl. Crystallogr. 42:472629
  41. 41.
    Winther KT, Hoffmann MJ, Boes JR, Mamun O, Bajdich M, Bligaard T. 2019. Sci. Data 6:75
  42. 42.
    Blaiszik B, Chard K, Pruyne J, Ananthakrishnan R, Tuecke S, Foster I. 2016. JOM 68:8204552
  43. 43.
    Kim S, Chen J, Cheng T, Gindulyte A, He J et al. 2019. Nucleic Acids Res. 47:D1D1102D1109
  44. 44.
    Luo J, Zhang S, Sun M, Yang L, Luo S, Crittenden JC. 2019. ACS Nano 13:9981140
  45. 45.
    EPA (Environ. Prot. Agency). 2022. Overview of greenhouse gases Environ. Top., EPA Washington, DC: https://www.epa.gov/ghgemissions/overview-greenhouse-gases
  46. 46.
    Benson EE, Kubiak CP, Sathrum AJ, Smieja JM. 2009. Chem. Soc. Rev. 38:8999
  47. 47.
    Jin H, Zhang H, Li J, Wang T, Wan L et al. 2019. J. Phys. Chem. Lett. 10:17521118
  48. 48.
    Barrett J. 2003. Inorganic Chemistry in Aqueous Solution Cambridge, UK: R. Soc. Chem.
  49. 49.
    Xiang C, Weber AZ, Ardo S, Berger A, Chen Y et al. 2016. Angew. Chem. Int. Ed. 55:421297488
  50. 50.
    Ringe S, Hormann NG, Oberhofer H, Reuter K. 2022. Chem. Rev. 122:1210777820. https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.1c00675
  51. 51.
    Schwarz K, Sundararaman R. 2020. Surf. Sci. Rep. 75:2100492
  52. 52.
    Singh AK, Zhou L, Shinde A, Suram SK, Montoya JH et al. 2017. Chem. Mater. 29:231015967
  53. 53.
    Pourbaix M. 1974. Atlas of Electrochemical Equilibria in Aqueous Solutions Houston, TX: Natl. Assoc. Corros. Eng.
  54. 54.
    Back S, Na J, Ulissi ZW 2021. ACS Catal. 11:5248391
  55. 55.
    Karmodak N, Andreussi O. 2020. ACS Energy Lett. 5:388591
  56. 56.
    Zhou L, Shinde A, Montoya JH, Singh A, Gul S et al. 2018. ACS Catal. 8:121093848
  57. 57.
    Gunasooriya GTKK, Nørskov JK. 2020. ACS Energy Lett. 5:12377887
  58. 58.
    Wang Z, Zheng YR, Chorkendorff I, Nørskov JK. 2020. ACS Energy Lett. 5:929058
  59. 59.
    Persson KA, Waldwick B, Lazic P, Ceder G. 2012. Phys. Rev. B 85:235438
  60. 60.
    Koyama M, Zhang Z, Wang M, Ponge D, Raabe D et al. 2017. Science 355:6329105557
  61. 61.
    Kazemi F, Saberi A, Malek-Ahmadi S, Sohrabi S, Rezaie H, Tahriri M. 2011. Ceram. Silik. 55:2630
  62. 62.
    Luo G, Yang S, Jenness GR, Song Z, Kuech TF, Morgan D. 2016. NPG Asia Mater. 9:e345
  63. 63.
    Belsky A, Hellenbrandt M, Karen VL, Luksch P. 2002. Acta Crystallogr. B 58:336469
  64. 64.
    Sun W, Dacek ST, Ong SP, Hautier G, Jain A et al. 2016. Sci. Adv. 2:11e1600225
  65. 65.
    Kumari S, Gutkowski R, Junqueira JRC, Kostka A, Hengge K et al. 2018. ACS Comb. Sci. 20:954453
  66. 66.
    Wygant BR, Kawashima K, Mullins CB. 2018. ACS Energy Lett. 3:12295666
  67. 67.
    Hubert MA, Patel AM, Gallo A, Liu Y, Valle E et al. 2020. ACS Catal. 10:201218296
  68. 68.
    Stevens MB, Kreider ME, Patel AM, Wang Z, Liu Y et al. 2020. ACS Appl. Energy Mater. 3:121243346
  69. 69.
    Mai H, Le TC, Hisatomi T, Chen D, Domen K et al. 2021. iScience 24:9103068
  70. 70.
    Kumar R, Singh AK. 2021. npj Comput. Mater. 7:197
  71. 71.
    Tao Q, Lu T, Sheng Y, Li L, Lu W, Li M. 2021. J. Energy Chem. 60:35159
  72. 72.
    Agarwal A, Goverapet Srinivasan S, Rai B 2021. Front. Mater. 8:292
  73. 73.
    Mazheika A, Wang YG, Valero R, Viñes F, Illas F et al. 2022. Nat. Commun. 13:419
  74. 74.
    Li X, Maffettone PM, Che Y, Liu T, Chen L, Cooper AI 2021. Chem. Sci. 12:321074254
  75. 75.
    Ding J, Bao J, Sun S, Luo Z, Gao C. 2009. J. Comb. Chem. 11:452326
  76. 76.
    Seyler M, Stoewe K, Maier WF. 2007. Appl. Catal. B Environ. 76:1–214657
  77. 77.
    Lettmann C, Hinrichs H, Maier WF. 2001. Angew. Chem. Int. Ed. 40:17316064
  78. 78.
    Parr RG. 1983. Annu. Rev. Phys. Chem. 34:63156
  79. 79.
    Chase MW Jr. 1998. NIST-JANAF Themochemical Tables. J. Phys. Chem. Ref. Data Monogr. 9. Woodbury, NY: Am. Chem. Soc./AIP. , 4th ed..
  80. 80.
    Kulik HJ. 2015. J. Chem. Phys. 142:240901
  81. 81.
    Garza AJ, Scuseria GE. 2016. J. Phys. Chem. Lett. 7:20416570
  82. 82.
    Gerber IC, Angyán JG. 2005. Chem. Phys. Lett. 415:1–31005
  83. 83.
    Onida G, Reining L, Rubio A. 2002. Rev. Mod. Phys. 74:260159
  84. 84.
    Wu Y, Lazic P, Hautier G, Persson K, Ceder G. 2013. Energy Environ. Sci. 6:15768
  85. 85.
    Castelli IE, Hüser F, Pandey M, Li H, Thygesen KS et al. 2015. Adv. Energy Mater. 5:21400915
  86. 86.
    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B et al. 2011. J. Mach. Learn. Res. 12:282530
  87. 87.
    Bonaccorso G. 2017. Machine Learning Algorithms: A Reference Guide to Popular Algorithms for Data Science and Machine Learning Birmingham, UK: Packt
  88. 88.
    Masood H, Toe CY, Teoh WY, Sethu V, Amal R 2019. ACS Catal. 9:121177487
  89. 89.
    Zhang Q, Chang D, Zhai X, Lu W. 2018. Chemom. Intel. Lab. Syst. 177:2634
  90. 90.
    Biswas T, Singh AK. 2021. npj Comput. Mater. 7:189
  91. 91.
    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A et al. 2018. Nat. Nanotechnol. 13:324652
  92. 92.
    Back S, Tran K, Ulissi ZW. 2020. ACS Appl. Mater. Interfaces 12:343825665
  93. 93.
    McCafferty E. 2010. Introduction to Corrosion Science New York: Springer
  94. 94.
    Hansen HA, Rossmeisl J, Nørskov JK. 2008. Phys. Chem. Chem. Phys. 10:25372230
  95. 95.
    Mathew K, Singh AK, Gabriel JJ, Choudhary K, Sinnott SB et al. 2016. Comput. Mater. Sci. 122:18390
  96. 96.
    Boland TM, Singh AK. 2022. Comput. Mater. Sci. 207:111238
  97. 97.
    Ong SP, Richards WD, Jain A, Hautier G, Kocher M et al. 2013. Comput. Mater. Sci. 68:31419
  98. 98.
    Wang Z, Guo X, Montoya J, Nørskov JK. 2020. npj Comput. Mater. 6:160
  99. 99.
    Huang LF, Rondinelli JM. 2019. npj Mater. Degrad. 3:14
  100. 100.
    Ayodele BV, Alsaffar MA, Mustapa SI, Cheng CK, Witoon T. 2021. Process Saf. Environ. Prot. 145:12032
/content/journals/10.1146/annurev-conmatphys-031620-100957
Loading
/content/journals/10.1146/annurev-conmatphys-031620-100957
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error