1932

Abstract

Weakly interacting quasiparticles play a central role in the low-energy description of many phases of quantum matter. At higher energies, however, quasiparticles cease to be well defined in generic many-body systems owing to a proliferation of decay channels. In this review, we discuss the phenomenon of quantum many-body scars, which can give rise to certain species of stable quasiparticles throughout the energy spectrum. This goes along with a set of unusual nonequilibrium phenomena including many-body revivals and nonthermal stationary states. We provide a pedagogical exposition of this physics via a simple yet comprehensive example, that of a spin-1 XY model. We place our discussion in the broader context of symmetry-based constructions of many-body scar states, projector embeddings, and Hilbert space fragmentation. We conclude with a summary of experimental progress and theoretical puzzles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031620-101617
2023-03-10
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/14/1/annurev-conmatphys-031620-101617.html?itemId=/content/journals/10.1146/annurev-conmatphys-031620-101617&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Chaikin PM, Lubensky TC. 1995. Principles of Condensed Matter Physics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  2. 2.
    Coleman P. 2015. Introduction to Many-Body Physics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  3. 3.
    Moessner R, Moore JE. 2021. Topological Phases of Matter Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  4. 4.
    Bethe H. 1931. Z. Phys. 71:3–420526
    [Google Scholar]
  5. 5.
    Giamarchi T. 2003. Quantum Physics in One Dimension Int. Ser. Monogr. Phys. Vol. 121 Oxford, UK: Clarendon
    [Google Scholar]
  6. 6.
    Sutherland B. 2004. Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body Problems Singapore: World Sci.
    [Google Scholar]
  7. 7.
    Essler FH, Frahm H, Göhmann F, Klümper A, Korepin VE. 2005. The One-Dimensional Hubbard Model Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  8. 8.
    Yang CN. 1989. Phys. Rev. Lett. 63:19214447
    [Google Scholar]
  9. 9.
    Bhatt RN, McMillan WL. 1974. Phys. Rev. A 10:5159197
    [Google Scholar]
  10. 10.
    Basko DM. 2017. Phys. Rev. Lett. 118:016805
    [Google Scholar]
  11. 11.
    Verresen R, Moessner R, Pollmann F. 2019. Nat. Phys. 15:875053
    [Google Scholar]
  12. 12.
    Turner CJ, Michailidis AA, Abanin DA, Serbyn M, Papić Z. 2018. Nat. Phys. 14:774549
    [Google Scholar]
  13. 13.
    Heller EJ. 1984. Phys. Rev. Lett. 53:16151518
    [Google Scholar]
  14. 14.
    Venuti LC. 2015. arXiv:1509.04352
  15. 15.
    Moudgalya S, Rachel S, Bernevig BA, Regnault N. 2018. Phys. Rev. B 98:23235155
    [Google Scholar]
  16. 16.
    Moudgalya S, Regnault N, Bernevig BA. 2018. Phys. Rev. B 98:23235156
    [Google Scholar]
  17. 17.
    Schecter M, Iadecola T. 2019. Phys. Rev. Lett. 123:14147201
    [Google Scholar]
  18. 18.
    Iadecola T, Schecter M. 2020. Phys. Rev. B 101:2024306
    [Google Scholar]
  19. 19.
    Mark DK, Lin CJ, Motrunich OI. 2020. Phys. Rev. B 101:19195131
    [Google Scholar]
  20. 20.
    Mark DK, Motrunich OI. 2020. Phys. Rev. B 102:7075132
    [Google Scholar]
  21. 21.
    Moudgalya S, Regnault N, Bernevig BA. 2020. Phys. Rev. B 102:8085140
    [Google Scholar]
  22. 22.
    Chattopadhyay S, Pichler H, Lukin MD, Ho WW. 2020. Phys. Rev. B 101:17174308
    [Google Scholar]
  23. 23.
    O'Dea N, Burnell F, Chandran A, Khemani V. 2020. Phys. Rev. Res. 2:4043305
    [Google Scholar]
  24. 24.
    Pakrouski K, Pallegar PN, Popov FK, Klebanov IR. 2020. Phys. Rev. Lett. 125:23230602
    [Google Scholar]
  25. 25.
    Pakrouski K, Pallegar PN, Popov FK, Klebanov IR. 2021. Phys. Rev. Res. 3:4043156
    [Google Scholar]
  26. 26.
    Ren J, Liang C, Fang C. 2021. Phys. Rev. Lett. 126:12120604
    [Google Scholar]
  27. 27.
    Tang LH, O'Dea N, Chandran A. 2021. arXiv:2110.11448
  28. 28.
    Langlett CM, Yang ZC, Wildeboer J, Gorshkov AV, Iadecola T, Xu S. 2022. Phys. Rev. B 105:6L060301
    [Google Scholar]
  29. 29.
    Omiya K, Müller M. 2022. arXiv:2203.00658
  30. 30.
    Houck AA, Türeci HE, Koch J. 2012. Nat. Phys. 8:429299
    [Google Scholar]
  31. 31.
    Langen T, Geiger R, Schmiedmayer J. 2015. Annu. Rev. Condens. Matter Phys. 6:20117
    [Google Scholar]
  32. 32.
    Morgado M, Whitlock S. 2021. AVS Quantum Sci. 3:2023501
    [Google Scholar]
  33. 33.
    Monroe C, Campbell WC, Duan LM, Gong ZX, Gorshkov AV et al. 2021. Rev. Mod. Phys. 93:2025001
    [Google Scholar]
  34. 34.
    D'Alessio L, Kafri Y, Polkovnikov A, Rigol M. 2016. Adv. Phys. 65:3239362
    [Google Scholar]
  35. 35.
    Deutsch JM. 2018. Rep. Prog. Phys. 81:8082001
    [Google Scholar]
  36. 36.
    Jensen RV, Shankar R. 1985. Phys. Rev. Lett. 54:187982
    [Google Scholar]
  37. 37.
    Deutsch JM. 1991. Phys. Rev. A 43:4204649
    [Google Scholar]
  38. 38.
    Srednicki M. 1994. Phys. Rev. E 50:2888901
    [Google Scholar]
  39. 39.
    Rigol M, Dunjko V, Olshanii M. 2008. Nature 452:85458
    [Google Scholar]
  40. 40.
    Vidmar L, Rigol M. 2016. J. Stat. Mech. Theory Exp. 2016:6064007
    [Google Scholar]
  41. 41.
    Santos LF. 2004. J. Phys. A Math. Gen. 37:17472329
    [Google Scholar]
  42. 42.
    Rabson DA, Narozhny BN, Millis AJ. 2004. Phys. Rev. B 69:5054403
    [Google Scholar]
  43. 43.
    Santos LF, Rigol M. 2010. Phys. Rev. E 81:036206
    [Google Scholar]
  44. 44.
    Modak R, Mukerjee S, Ramaswamy S. 2014. Phys. Rev. B 90:7075152
    [Google Scholar]
  45. 45.
    Pandey M, Claeys PW, Campbell DK, Polkovnikov A, Sels D. 2020. Phys. Rev. X 10:041017
    [Google Scholar]
  46. 46.
    Nandkishore R, Huse DA. 2015. Annu. Rev. Condens. Matter Phys. 6:1538
    [Google Scholar]
  47. 47.
    Abanin DA, Altman E, Bloch I, Serbyn M. 2019. Rev. Mod. Phys. 91:2021001
    [Google Scholar]
  48. 48.
    Serbyn M, Papić Z, Abanin DA. 2013. Phys. Rev. Lett. 111:12127201
    [Google Scholar]
  49. 49.
    Huse DA, Nandkishore R, Oganesyan V. 2014. Phys. Rev. B 90:17174202
    [Google Scholar]
  50. 50.
    Swingle B. 2013. arXiv:1307.0507
  51. 51.
    Šuntajs J, Bonča J, Prosen T, Vidmar L. 2020. Phys. Rev. E 102:6062144
    [Google Scholar]
  52. 52.
    Sels D, Polkovnikov A. 2021. Phys. Rev. E 104:5054105
    [Google Scholar]
  53. 53.
    Abanin D, Bardarson J, De Tomasi G, Gopalakrishnan S, Khemani V et al. 2021. Ann. Phys. 427:168415
    [Google Scholar]
  54. 54.
    Panda RK, Scardicchio A, Schulz M, Taylor SR, Žnidarič M. 2020. Europhys. Lett. 128:667003
    [Google Scholar]
  55. 55.
    Crowley PJD, Chandran A. 2022. SciPost Phys. 12:201
    [Google Scholar]
  56. 56.
    Morningstar A, Colmenarez L, Khemani V, Luitz DJ, Huse DA. 2022. Phys. Rev. B 105:174205
    [Google Scholar]
  57. 57.
    Serbyn M, Abanin DA, Papić Z. 2021. Nat. Phys. 17:667585
    [Google Scholar]
  58. 58.
    Moudgalya S, Bernevig BA, Regnault N. 2022. Rep. Prog. Phys. 85:086501
    [Google Scholar]
  59. 59.
    Bernien H, Schwartz S, Keesling A, Levine H, Omran A et al. 2017. Nature 551:768257984
    [Google Scholar]
  60. 60.
    Affleck I, Kennedy T, Lieb EH, Tasaki H. 1987. Phys. Rev. Lett. 59:7799802
    [Google Scholar]
  61. 61.
    Mehta ML. 2004. Random Matrices Amsterdam: Elsevier
    [Google Scholar]
  62. 62.
    Page DN. 1993. Phys. Rev. Lett. 71:9129194
    [Google Scholar]
  63. 63.
    Yang CN. 1962. Rev. Mod. Phys. 34:4694704
    [Google Scholar]
  64. 64.
    Gorin T, Prosen T, Seligman TH, Žnidarič M. 2006. Phys. Rep. 435:233156
    [Google Scholar]
  65. 65.
    Goussev A, Jalabert RA, Pastawski HM, Wisniacki DA. 2016. Philos. Trans. R. Soc. A 374:20150383
    [Google Scholar]
  66. 66.
    Choi S, Turner CJ, Pichler H, Ho WW, Michailidis AA et al. 2019. Phys. Rev. Lett. 122:22220603
    [Google Scholar]
  67. 67.
    Kitazawa A, Hijii K, Nomura K. 2003. J. Phys. A 36:23L35157
    [Google Scholar]
  68. 68.
    Ren J, Liang C, Fang C. 2022. Phys. Rev. Res. 4:013155
    [Google Scholar]
  69. 69.
    Vafek O, Regnault N, Bernevig BA. 2017. SciPost Phys. 3:6043
    [Google Scholar]
  70. 70.
    van Voorden B, Minář J, Schoutens K. 2020. Phys. Rev. B 101:220305
    [Google Scholar]
  71. 71.
    Martin I, Matveev KA. 2022. Phys. Rev. B 105:045119
    [Google Scholar]
  72. 72.
    Schindler F, Regnault N, Bernevig BA. 2022. Phys. Rev. B 105:3035146
    [Google Scholar]
  73. 73.
    Buča B, Tindall J, Jaksch D. 2019. Nat. Commun. 10:1730
    [Google Scholar]
  74. 74.
    Buča B, Purkayastha A, Guarnieri G, Mitchison MT, Jaksch D, Goold J. 2020. arXiv:2008.11166
  75. 75.
    Buča B. 2022. Phys. Rev. Lett. 128:10100601
    [Google Scholar]
  76. 76.
    Moudgalya S, O'Brien E, Bernevig BA, Fendley P, Regnault N. 2020. Phys. Rev. B 102:8085120
    [Google Scholar]
  77. 77.
    Khemani V, Laumann CR, Chandran A. 2019. Phys. Rev. B 99:16161101
    [Google Scholar]
  78. 78.
    Kao W, Li K-Y, Lin K-Y, Gopalakrishnan S, Lev BL. 2021. Science 371:6526296300
    [Google Scholar]
  79. 79.
    Shibata N, Yoshioka N, Katsura H. 2020. Phys. Rev. Lett. 124:18180604
    [Google Scholar]
  80. 80.
    Medenjak M, Buča B, Jaksch D. 2020. Phys. Rev. B 102:4041117
    [Google Scholar]
  81. 81.
    Zhang Z, Mussardo G. 2022. Phys. Rev. B 106:134420
    [Google Scholar]
  82. 82.
    Qi XL, Ranard D. 2019. Quantum 3:159
    [Google Scholar]
  83. 83.
    Sattath O, Morampudi SC, Laumann CR, Moessner R. 2016. PNAS 113:23643337
    [Google Scholar]
  84. 84.
    James AJA, Konik RM, Robinson NJ. 2019. Phys. Rev. Lett. 122:13130603
    [Google Scholar]
  85. 85.
    Robinson NJ, James AJA, Konik RM. 2019. Phys. Rev. B 99:19195108
    [Google Scholar]
  86. 86.
    Shastry B, Sutherland B. 1981. Physica 108B:106970
    [Google Scholar]
  87. 87.
    Chayes JT, Chayes L, Kivelson SA. 1989. Commun. Math. Phys. 123:5383
    [Google Scholar]
  88. 88.
    Rokhsar DS, Kivelson SA. 1988. Phys. Rev. Lett. 61:20237679
    [Google Scholar]
  89. 89.
    Castelnovo C, Chamon C, Mudry C, Pujol P. 2005. Ann. Phys. 318:231644
    [Google Scholar]
  90. 90.
    Kitaev A. 2003. Ann. Phys. 303:230
    [Google Scholar]
  91. 91.
    Fannes M, Nachtergaele B, Werner RF. 1992. Commun. Math. Phys. 144:344390
    [Google Scholar]
  92. 92.
    Nachtergaele B. 1996. Commun. Math. Phys. 175:3565606
    [Google Scholar]
  93. 93.
    Perez-Garcia D, Verstraete F, Wolf MM, Cirac JI. 2007. Quantum Inf. Comput. 7:540130
    [Google Scholar]
  94. 94.
    Fernández-González C, Schuch N, Wolf MM, Cirac JI, Pérez-García D. 2015. Commun. Math. Phys. 333:299333
    [Google Scholar]
  95. 95.
    Shiraishi N, Mori T. 2017. Phys. Rev. Lett. 119:3030601
    [Google Scholar]
  96. 96.
    Mori T, Shiraishi N. 2017. Phys. Rev. E 96:2022153
    [Google Scholar]
  97. 97.
    Mondaini R, Mallayya K, Santos LF, Rigol M. 2018. Phys. Rev. Lett. 121:3038901
    [Google Scholar]
  98. 98.
    McClarty PA, Haque M, Sen A, Richter J. 2020. Phys. Rev. B 102:22224303
    [Google Scholar]
  99. 99.
    Kuno Y, Mizoguchi T, Hatsugai Y. 2020. Phys. Rev. B 102:24241115
    [Google Scholar]
  100. 100.
    Banerjee D, Sen A. 2021. Phys. Rev. Lett. 126:22220601
    [Google Scholar]
  101. 101.
    Biswas S, Banerjee D, Sen A. 2022. SciPost Phys. 12:148
    [Google Scholar]
  102. 102.
    Ok S, Choo K, Mudry C, Castelnovo C, Chamon C, Neupert T. 2019. Phys. Rev. Res. 1:3033144
    [Google Scholar]
  103. 103.
    Srivatsa NS, Wildeboer J, Seidel A, Nielsen AEB. 2020. Phys. Rev. B 102:23235106
    [Google Scholar]
  104. 104.
    Wildeboer J, Seidel A, Srivatsa NS, Nielsen AEB, Erten O. 2021. Phys. Rev. B 104:12L121103
    [Google Scholar]
  105. 105.
    Lee K, Melendrez R, Pal A, Changlani HJ. 2020. Phys. Rev. B 101:24241111
    [Google Scholar]
  106. 106.
    Khemani V, Hermele M, Nandkishore R. 2020. Phys. Rev. B 101:17174204
    [Google Scholar]
  107. 107.
    Sala P, Rakovszky T, Verresen R, Knap M, Pollmann F. 2020. Phys. Rev. X 10:011047
    [Google Scholar]
  108. 108.
    Moudgalya S, Prem A, Nandkishore R, Regnault N, Bernevig BA 2021. Memorial Volume for Shoucheng Zhang B Lian, C-X Liu, E Demler, S Kivelson, X-L Qi 147209. Singapore: World Sci.
    [Google Scholar]
  109. 109.
    Yang ZC, Liu F, Gorshkov AV, Iadecola T. 2020. Phys. Rev. Lett. 124:20207602
    [Google Scholar]
  110. 110.
    Rakovszky T, Sala P, Verresen R, Knap M, Pollmann F. 2020. Phys. Rev. B 101:12125126
    [Google Scholar]
  111. 111.
    Moudgalya S, Motrunich OI. 2022. Phys. Rev. X 12:011050
    [Google Scholar]
  112. 112.
    Pai S, Pretko M. 2019. Phys. Rev. Lett. 123:13136401
    [Google Scholar]
  113. 113.
    Nandkishore RM, Hermele M. 2019. Annu. Rev. Condens. Matter Phys. 10:295313
    [Google Scholar]
  114. 114.
    Pretko M, Chen X, You Y 2020. Int. J. Mod. Phys. A 35:62030003
    [Google Scholar]
  115. 115.
    Tao R, Thouless DJ. 1983. Phys. Rev. B 28:2114244
    [Google Scholar]
  116. 116.
    Bergholtz EJ, Karlhede A. 2006. J. Stat. Mech. Theory Exp. 2006:04L04001
    [Google Scholar]
  117. 117.
    Moudgalya S, Bernevig BA, Regnault N. 2020. Phys. Rev. B 102:19195150
    [Google Scholar]
  118. 118.
    Abanin D, De Roeck W, Ho WW, Huveneers F. 2017. Commun. Math. Phys. 354:380927
    [Google Scholar]
  119. 119.
    Mori T, Kuwahara T, Saito K. 2016. Phys. Rev. Lett. 116:12120401
    [Google Scholar]
  120. 120.
    Guo Q, Cheng C, Li H, Xu S, Zhang P et al. 2021. Phys. Rev. Lett. 127:24240502
    [Google Scholar]
  121. 121.
    Wang YY, Sun ZH, Fan H. 2021. Phys. Rev. B 104:20205122
    [Google Scholar]
  122. 122.
    Morong W, Liu F, Becker P, Collins KS, Feng L et al. 2021. Nature 599:788539398
    [Google Scholar]
  123. 123.
    Schulz M, Hooley CA, Moessner R, Pollmann F. 2019. Phys. Rev. Lett. 122:4040606
    [Google Scholar]
  124. 124.
    van Nieuwenburg E, Baum Y, Refael G. 2019. PNAS 116:19926974
    [Google Scholar]
  125. 125.
    Gromov A, Lucas A, Nandkishore RM. 2020. Phys. Rev. Res. 2:3033124
    [Google Scholar]
  126. 126.
    Grosvenor KT, Hoyos C, Peña Benitez F, Surówka P. 2021. Phys. Rev. Res. 3:4043186
    [Google Scholar]
  127. 127.
    Iaconis J, Lucas A, Nandkishore R. 2021. Phys. Rev. E 103:2022142
    [Google Scholar]
  128. 128.
    Iadecola T, Žnidarič M. 2019. Phys. Rev. Lett. 123:3036403
    [Google Scholar]
  129. 129.
    De Tomasi G, Hetterich D, Sala P, Pollmann F. 2019. Phys. Rev. B 100:21214313
    [Google Scholar]
  130. 130.
    Nachtergaele B, Warzel S, Young A. 2020. J. Phys. A Math. Theor. 54:01LT01
    [Google Scholar]
  131. 131.
    Lan Z, van Horssen M, Powell S, Garrahan JP 2018. Phys. Rev. Lett. 121:4040603
    [Google Scholar]
  132. 132.
    Olmos B, Müller M, Lesanovsky I. 2010. New J. Phys. 12:013024
    [Google Scholar]
  133. 133.
    Gopalakrishnan S, Zakirov B. 2018. Quantum Sci. Technol. 3:4044004
    [Google Scholar]
  134. 134.
    Gopalakrishnan S. 2018. Phys. Rev. B 98:6060302
    [Google Scholar]
  135. 135.
    Hudomal A, Vasić I, Regnault N, Papić Z. 2020. Commun. Phys. 3:99
    [Google Scholar]
  136. 136.
    Zhao H, Vovrosh J, Mintert F, Knolle J. 2020. Phys. Rev. Lett. 124:16160604
    [Google Scholar]
  137. 137.
    Zhao H, Smith A, Mintert F, Knolle J. 2021. Phys. Rev. Lett. 127:15150601
    [Google Scholar]
  138. 138.
    Sikora O, Shannon N, Pollmann F, Penc K, Fulde P. 2011. Phys. Rev. B 84:11115129
    [Google Scholar]
  139. 139.
    Zhang Z, Røising HS. 2022. arXiv:2206.01758
  140. 140.
    Moessner R, Sondhi SL. 2001. Phys. Rev. Lett. 86:9188184
    [Google Scholar]
  141. 141.
    Cépas O, Akhmetiev PM. 2021. SciPost Phys. 10:242
    [Google Scholar]
  142. 142.
    Yin H, Chakraborty B. 2001. Phys. Rev. Lett. 86:10205861
    [Google Scholar]
  143. 143.
    Garrahan JP, Chandler D. 2002. Phys. Rev. Lett. 89:3035704
    [Google Scholar]
  144. 144.
    Garrahan JP, Jack RL, Lecomte V, Pitard E, van Duijvendijk K, van Wijland F. 2007. Phys. Rev. Lett. 98:19195702
    [Google Scholar]
  145. 145.
    van Horssen M, Levi E, Garrahan JP 2015. Phys. Rev. B 92:10100305
    [Google Scholar]
  146. 146.
    Pancotti N, Giudice G, Cirac JI, Garrahan JP, Bañuls MC. 2020. Phys. Rev. X 10:2021051
    [Google Scholar]
  147. 147.
    Charbonneau P, Kurchan J, Parisi G, Urbani P, Zamponi F. 2017. Annu. Rev. Condens. Matter Phys. 8:26588
    [Google Scholar]
  148. 148.
    Bluvstein D, Omran A, Levine H, Keesling A, Semeghini G et al. 2021. Science 371:6536135559
    [Google Scholar]
  149. 149.
    Jaksch D, Cirac JI, Zoller P, Rolston SL, Côté R, Lukin MD. 2000. Phys. Rev. Lett. 85:10220811
    [Google Scholar]
  150. 150.
    Fendley P, Sengupta K, Sachdev S. 2004. Phys. Rev. B 69:7075106
    [Google Scholar]
  151. 151.
    Surace FM, Mazza PP, Giudici G, Lerose A, Gambassi A, Dalmonte M. 2020. Phys. Rev. X 10:2021041
    [Google Scholar]
  152. 152.
    Moessner R, Sondhi SL. 2001. Phys. Rev. B 63:22224401
    [Google Scholar]
  153. 153.
    Laumann CR, Moessner R, Scardicchio A, Sondhi SL. 2012. Phys. Rev. Lett. 109:3030502
    [Google Scholar]
  154. 154.
    Chen C, Burnell F, Chandran A. 2018. Phys. Rev. Lett. 121:8085701
    [Google Scholar]
  155. 155.
    Gutzwiller MC. 1963. Phys. Rev. Lett. 10:515962
    [Google Scholar]
  156. 156.
    Anderson PW. 1987. Science 235:119698
    [Google Scholar]
  157. 157.
    Castelnovo C, Moessner R, Sondhi S. 2012. Annu. Rev. Condens. Matter Phys. 3:3555
    [Google Scholar]
  158. 158.
    Girvin SM 1999. Topological Aspects of Low Dimensional Systems, Vol. 69 A Comtet, T Jolicoeur, S Ouvry, F David 53175. Berlin: Springer
    [Google Scholar]
  159. 159.
    Turner CJ, Michailidis AA, Abanin DA, Serbyn M, Papić Z. 2018. Phys. Rev. B 98:15155134
    [Google Scholar]
  160. 160.
    Desaules JY, Bull K, Daniel A, Papić Z. 2022. Phys. Rev. B 105:245137
    [Google Scholar]
  161. 161.
    Turner CJ, Desaules JY, Bull K, Papić Z. 2021. Phys. Rev. X 11:2021021
    [Google Scholar]
  162. 162.
    Ho WW, Choi S, Pichler H, Lukin MD. 2019. Phys. Rev. Lett. 122:4040603
    [Google Scholar]
  163. 163.
    Michailidis AA, Turner CJ, Papić Z, Abanin DA, Serbyn M. 2020. Phys. Rev. Res. 2:2022065
    [Google Scholar]
  164. 164.
    Michailidis AA, Turner CJ, Papić Z, Abanin DA, Serbyn M. 2020. Phys. Rev. X 10:011055
    [Google Scholar]
  165. 165.
    Haegeman J, Cirac JI, Osborne TJ, Pižorn I, Verschelde H, Verstraete F. 2011. Phys. Rev. Lett. 107:7070601
    [Google Scholar]
  166. 166.
    Franchini F. 2017. Lecture Notes in Physics, Vol. 940: An Introduction to Integrable Techniques for One-Dimensional Quantum Systems Cham: Springer. , 1st ed..
    [Google Scholar]
  167. 167.
    Berges J, Borsányi S, Wetterich C. 2004. Phys. Rev. Lett. 93:14142002
    [Google Scholar]
  168. 168.
    Kinoshita T, Wenger T, Weiss DS. 2006. Nature 440:7086900903
    [Google Scholar]
  169. 169.
    Gring M, Kuhnert M, Langen T, Kitagawa T, Rauer B et al. 2012. Science 337:6100131822
    [Google Scholar]
  170. 170.
    Neyenhuis B, Zhang J, Hess PW, Smith J, Lee AC et al. 2017. Sci. Adv. 3:8e1700672
    [Google Scholar]
  171. 171.
    Eckstein M, Hackl A, Kehrein S, Kollar M, Moeckel M et al. 2009. Eur. Phys. J. Spec. Top. 180:21735
    [Google Scholar]
  172. 172.
    Eisert J, Friesdorf M, Gogolin C. 2015. Nat. Phys. 11:212430
    [Google Scholar]
  173. 173.
    Vasseur R, Moore JE. 2016. J. Stat. Mech. Theory Exp. 2016:6064010
    [Google Scholar]
  174. 174.
    Windt B, Pichler H. 2022. Phys. Rev. Lett. 128:9090606
    [Google Scholar]
  175. 175.
    Iadecola T, Schecter M, Xu S. 2019. Phys. Rev. B 100:18184312
    [Google Scholar]
  176. 176.
    Ovchinnikov AA, Dmitriev DV, Krivnov VY, Cheranovskii VO. 2003. Phys. Rev. B 68:21214406
    [Google Scholar]
  177. 177.
    Chen IC, Burdick B, Yao Y, Orth PP, Iadecola T. 2022. Phys. Rev. Res. 4:043027
    [Google Scholar]
  178. 178.
    Pan L, Zhai H. 2022. Phys. Rev. Res 4:L032037
    [Google Scholar]
  179. 179.
    Lesanovsky I. 2012. Phys. Rev. Lett. 108:10105301
    [Google Scholar]
  180. 180.
    Lin CJ, Motrunich OI. 2019. Phys. Rev. Lett. 122:17173401
    [Google Scholar]
  181. 181.
    Schecter M, Iadecola T. 2018. Phys. Rev. B 98:3035139
    [Google Scholar]
  182. 182.
    Bull K, Desaules JY, Papić Z. 2020. Phys. Rev. B 101:16165139
    [Google Scholar]
  183. 183.
    Su GX, Sun H, Hudomal A, Desaules JY, Zhou ZY et al. 2022. arXiv:2201.00821
  184. 184.
    Zhang P, Dong H, Gao Y, Zhao L, Hao J et al. 2022. Nat. Phys. 2022: https://doi.org/10.1038/s41567-022-01784-9
    [Google Scholar]
  185. 185.
    Cazalilla MA, Citro R, Giamarchi T, Orignac E, Rigol M. 2011. Rev. Mod. Phys. 83:140566
    [Google Scholar]
  186. 186.
    Lin CJ, Chandran A, Motrunich OI. 2020. Phys. Rev. Res. 2:3033044
    [Google Scholar]
  187. 187.
    Mondragon-Shem I, Vavilov MG, Martin I. 2021. PRX Quantum 2:3030349
    [Google Scholar]
  188. 188.
    Lazarides A, Das A, Moessner R. 2014. Phys. Rev. E 90:012110
    [Google Scholar]
  189. 189.
    D'Alessio L, Rigol M. 2014. Phys. Rev. X 4:4041048
    [Google Scholar]
  190. 190.
    Haldar A, Sen D, Moessner R, Das A. 2021. Phys. Rev. X 11:2021008
    [Google Scholar]
  191. 191.
    Mukherjee B, Nandy S, Sen A, Sen D, Sengupta K. 2020. Phys. Rev. B 101:24245107
    [Google Scholar]
  192. 192.
    Mizuta K, Takasan K, Kawakami N. 2020. Phys. Rev. Res. 2:3033284
    [Google Scholar]
  193. 193.
    Sugiura S, Kuwahara T, Saito K. 2021. Phys. Rev. Res. 3:L012010
    [Google Scholar]
  194. 194.
    Maskara N, Michailidis AA, Ho WW, Bluvstein D, Choi S et al. 2021. Phys. Rev. Lett. 127:9090602
    [Google Scholar]
  195. 195.
    Iadecola T, Vijay S. 2020. Phys. Rev. B 102:18180302
    [Google Scholar]
  196. 196.
    Wilkinson JWP, Klobas K, Prosen T, Garrahan JP. 2020. Phys. Rev. E 102:6062107
    [Google Scholar]
  197. 197.
    Rozon PG, Gullans MJ, Agarwal K. 2021. arXiv:2112.12153
  198. 198.
    Khemani V, Lazarides A, Moessner R, Sondhi SL. 2016. Phys. Rev. Lett. 116:25250401
    [Google Scholar]
  199. 199.
    Sacha K, Zakrzewski J. 2017. Rep. Prog. Phys. 81:016401
    [Google Scholar]
  200. 200.
    Khemani V, Moessner R, Sondhi SL. 2019. arXiv:1910.10745
  201. 201.
    Else DV, Monroe C, Nayak C, Yao NY. 2020. Annu. Rev. Condens. Matter Phys. 11:46799
    [Google Scholar]
  202. 202.
    Wisniacki D, Carlo GG. 2008. Phys. Rev. E 77:4045201
    [Google Scholar]
  203. 203.
    Srivatsa NS, Moessner R, Nielsen AEB. 2020. Phys. Rev. Lett. 125:24240401
    [Google Scholar]
  204. 204.
    Jepsen PN, Lee YK, Lin H, Dimitrova I, Margalit Y et al. 2022. Nat. Phys. 18:899904
    [Google Scholar]
  205. 205.
    Dooley S. 2021. PRX Quantum 2:2020330
    [Google Scholar]
  206. 206.
    Desaules JY, Pietracaprina F, Papić Z, Goold J, Pappalardi S. 2022. Phys. Rev. Lett. 129:020601
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031620-101617
Loading
/content/journals/10.1146/annurev-conmatphys-031620-101617
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error