1932

Abstract

Life is a nonequilibrium phenomenon: Metabolism provides a continuous supply of energy that drives nearly all cellular processes. However, very little is known about how much energy different cellular processes use, i.e., their energetic costs. The most direct experimental measurements of these costs involve modulating the activity of cellular processes and determining the resulting changes in energetic fluxes. In this review, we present a flux balance framework to aid in the design and interpretation of such experiments and discuss the challenges associated with measuring the relevant metabolic fluxes. We then describe selected techniques that enable measurement of these fluxes. Finally, we review prior experimental and theoretical work that has employed techniques from biochemistry and nonequilibrium physics to determine the energetic costs of cellular processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031620-105251
2023-03-10
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/14/1/annurev-conmatphys-031620-105251.html?itemId=/content/journals/10.1146/annurev-conmatphys-031620-105251&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Yang X, Heinemann M, Howard J, Huber G, Iyer-Biswas S et al. 2021. PNAS 118:26e2026786118
    [Google Scholar]
  2. 2.
    Lynch M, Marinov GK. 2015. PNAS 112:511569095
    [Google Scholar]
  3. 3.
    Forrest W, Walker D. 1971. Adv. Microb. Physiol. 5:21374
    [Google Scholar]
  4. 4.
    Stouthamer A. 1973. Antonie van Leeuwenhoek 39:154565
    [Google Scholar]
  5. 5.
    Waterlow J, Millward D 1989. Energy Transformation in Cells and Organisms: Proceedings of the 10th Conference of the European Society for Comparative Physiology and Biochemistry W Wieser, E Gnaiger 27782. Innsbruck, Austria: Thieme
    [Google Scholar]
  6. 6.
    Wieser W, Krumschnabel G. 2001. Biochem. J. 355:238995
    [Google Scholar]
  7. 7.
    Smith R, Houlihan D. 1995. J. Comp. Physiol. B 165:293101
    [Google Scholar]
  8. 8.
    Buttgereit F, Brand MD. 1995. Biochem. J. 312:116367
    [Google Scholar]
  9. 9.
    Brown T, Ugurbil K, Shulman R. 1977. PNAS 74:12555153
    [Google Scholar]
  10. 10.
    De la Fuente IM, Cortés JM, Valero E, Desroches M, Rodrigues S, Malaina EA. 2014. PLOS ONE 9:10e108676
    [Google Scholar]
  11. 11.
    Park JO, Rubin SA, Xu YF, Amador-Noguez D, Fan J et al. 2016. Nat. Chem. Biol. 12:748289
    [Google Scholar]
  12. 12.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2008. Molecular Biology of the Cell New York: Garland
    [Google Scholar]
  13. 13.
    Frick O, Wittmann C. 2005. Microb. Cell Fact. 4:30
    [Google Scholar]
  14. 14.
    Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T et al. 2012. Cancer Cell 22:16679
    [Google Scholar]
  15. 15.
    Fraenkel DG. 2011. Yeast Intermediary Metabolism Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press
    [Google Scholar]
  16. 16.
    Salway JG. 2016. Metabolism at a Glance Oxford, UK: Wiley-Blackwell
    [Google Scholar]
  17. 17.
    Hinkle PC. 2005. Biochim. Biophys. Acta Bioenerget. 1706:1/2111
    [Google Scholar]
  18. 18.
    Hinkle PC, Kumar MA, Resetar A, Harris DL. 1991. Biochemistry 30:14357682
    [Google Scholar]
  19. 19.
    Brand MD. 1995. Biochemist 16:2024
    [Google Scholar]
  20. 20.
    Mookerjee SA, Gerencser AA, Nicholls DG, Brand MD. 2017. J. Biol. Chem. 292:177189207
    [Google Scholar]
  21. 21.
    Martinez-Reyes I, Chandel NS 2020. Nat. Commun. 11:102
    [Google Scholar]
  22. 22.
    Filipp FV, Ratnikov B, De Ingeniis J, Smith JW, Osterman AL, Scott DA. 2012. Pigment Cell Melanoma Res. 25:673239
    [Google Scholar]
  23. 23.
    Ferrick DA, Neilson A, Beeson C. 2008. Drug Discov. Today 13:5/626874
    [Google Scholar]
  24. 24.
    Thornton W. 1917. Lond. Edinb. Dublin Philos. Mag. J. Sci. 33:194196203
    [Google Scholar]
  25. 25.
    Hansen LD, Macfarlane C, McKinnon N, Smith BN, Criddle RS. 2004. Thermochim. Acta 422:15561
    [Google Scholar]
  26. 26.
    Kemp RB. 1991. Thermochim. Acta 193:25367
    [Google Scholar]
  27. 27.
    Lerchner J, Sartori MR, Volpe POL, Lander N, Mertens F, Vercesi AE. 2019. Anal. Bioanal. Chem. 411:17376368
    [Google Scholar]
  28. 28.
    Battley EH. 1992. Biotechnol. Bioeng. 39:1512
    [Google Scholar]
  29. 29.
    Song Y, Park JO, Tanner L, Nagano Y, Rabinowitz JD, Shvartsman SY. 2019. Curr. Biol. 29:12R56667
    [Google Scholar]
  30. 30.
    Rodenfels J, Sartori P, Golfier S, Nagendra K, Neugebauer KM, Howard J. 2020. Mol. Biol. Cell 31:7511723
    [Google Scholar]
  31. 31.
    Buchenberg S, Sittel F, Stock G. 2017. PNAS 114:33E680411
    [Google Scholar]
  32. 32.
    Maier T, Schmidt A, Güell M, Kühner S, Gavin AC et al. 2011. Mol. Syst. Biol. 7:511
    [Google Scholar]
  33. 33.
    Kresnowati D. 2006. Mol. Syst. Biol. 2:49
    [Google Scholar]
  34. 34.
    Divakaruni AS, Brand MD. 2011. Physiology 26:3192205
    [Google Scholar]
  35. 35.
    Ellis R, MacDonald I. 1970. Plant Physiol. 46:222732
    [Google Scholar]
  36. 36.
    Brown GC. 1992. Biochem. J. 284:113
    [Google Scholar]
  37. 37.
    Jacobs N, Jacobs J. 1976. Biochim. Biophys. Acta Bioenerget. 449:119
    [Google Scholar]
  38. 38.
    Spinelli JB, Rosen PC, Sprenger HG, Puszynska AM, Mann JL et al. 2021. Science 374:6572122737
    [Google Scholar]
  39. 39.
    Yang X, Ha G, Needleman D 2021. eLife 10:e73808
    [Google Scholar]
  40. 40.
    Allen JF. 2002. Cell 110:327376
    [Google Scholar]
  41. 41.
    James KL, Ríos-Hernández LA, Wofford NQ, Mouttaki H, Sieber JR et al. 2016. mBio 7:4e01208–16
    [Google Scholar]
  42. 42.
    Wu KC, Cui JY, Klaassen CD. 2011. Toxicol. Sci. 123:2590600
    [Google Scholar]
  43. 43.
    Law RC, Lakhani A, O'Keeffe S, Erşan S, Park JO. 2022. Curr. Opin. Biotechnol. 75:102701
    [Google Scholar]
  44. 44.
    Brand MD, Nicholls DG. 2011. Biochem. J. 435:2297312
    [Google Scholar]
  45. 45.
    Houghton FD, Thompson JG, Kennedy CJ, Leese HJ. 1996. Mol. Reprod. Dev. Gamete Res. 44:447685
    [Google Scholar]
  46. 46.
    Gnaiger E, Méndez G, Hand SC. 2000. PNAS 97:201108085
    [Google Scholar]
  47. 47.
    Lopes A, Larsen L, Ramsing N, Løvendahl P, Raty M et al. 2005. Reproduction 130:566979
    [Google Scholar]
  48. 48.
    Lu W, Su X, Klein MS, Lewis IA, Fiehn O, Rabinowitz JD. 2017. Annu. Rev. Biochem. 86:277304
    [Google Scholar]
  49. 49.
    Allen PS, Thompson RB, Wilman AH. 1997. NMR Biomed. Int. J. 10:843544
    [Google Scholar]
  50. 50.
    Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X et al. 2017. Nature 551:767811518
    [Google Scholar]
  51. 51.
    Schmidt CA, Fisher-Wellman KH, Neufer PD. 2021. J. Biol. Chem. 297:101140
    [Google Scholar]
  52. 52.
    Bagamery LE, Justman QA, Garner EC, Murray AW. 2020. Curr. Biol. 30:23456378
    [Google Scholar]
  53. 53.
    Bernier LP, York EM, Kamyabi A, Choi HB, Weilinger NL, MacVicar BA. 2020. Nat. Commun. 11:1559
    [Google Scholar]
  54. 54.
    Paczia N, Nilgen A, Lehmann T, Gätgens J, Wiechert W, Noack S. 2012. Microb. Cell Fact. 11:122
    [Google Scholar]
  55. 55.
    Ferreiro-Vera C, Mata-Granados JM, Priego-Capote F, Quesada-Gomez JM, Luque de Castro MD. 2011. Anal. Bioanal. Chem. 399:31093103
    [Google Scholar]
  56. 56.
    Birkenstock T, Liebeke M, Winstel V, Krismer B, Gekeler C et al. 2012. J. Biol. Chem. 287:4288795
    [Google Scholar]
  57. 57.
    Duarte IF, Diaz SO, Gil AM. 2014. J. Pharm. Biomed. Anal. 93:1726
    [Google Scholar]
  58. 58.
    Koga K, Miura I. 1988. Biochem. Biophys. Res. Commun. 157:3125863
    [Google Scholar]
  59. 59.
    Brindle KM. 1988. Biochemistry 27:16618796
    [Google Scholar]
  60. 59a.
    Brindle K, Krikler S 1985. Biochim. Biophys. Acta 847:28592
    [Google Scholar]
  61. 60.
    Zamboni N. 2011. Curr. Opin. Biotechnol. 22:11038
    [Google Scholar]
  62. 61.
    Antoniewicz MR. 2015. J. Ind. Microb. Biotechnol. 42:331725
    [Google Scholar]
  63. 62.
    Leighty RW, Antoniewicz MR. 2011. Metab. Eng. 13:674555
    [Google Scholar]
  64. 63.
    Cheah YE, Young JD. 2018. Curr. Opin. Biotechnol. 54:8087
    [Google Scholar]
  65. 64.
    Yuan J, Bennett BD, Rabinowitz JD. 2008. Nat. Protoc. 3:8132840
    [Google Scholar]
  66. 65.
    Zhang L, Shi L, Shen Y, Miao Y, Wei M et al. 2019. Nat. Biomed. Eng. 3:540213
    [Google Scholar]
  67. 66.
    Shen J, Petersen KF, Behar KL, Brown P, Nixon TW et al. 1999. PNAS 96:14823540
    [Google Scholar]
  68. 67.
    Alger J, Den Hollander J, Shulman R 1982. Biochemistry 21:12295763
    [Google Scholar]
  69. 68.
    Freeman D, Bartlett S, Radda G, Ross B 1983. Biochim. Biophys. Acta Mol. Cell Res. 762:232536
    [Google Scholar]
  70. 69.
    Matthews P, Bland J, Gadian D, Radda G. 1981. Biochem. Biophys. Res. Commun. 103:3105259
    [Google Scholar]
  71. 70.
    Fischer E, Sauer U. 2005. Nat. Genet. 37:663640
    [Google Scholar]
  72. 71.
    Fischer E, Sauer U. 2003. Eur. J. Biochem. 270:588091
    [Google Scholar]
  73. 72.
    Van Winden WA, Van Dam JC, Ras C, Kleijn RJ, Vinke JL et al. 2005. FEMS Yeast Res. 5:6/755968
    [Google Scholar]
  74. 73.
    Hu F, Chen Z, Zhang L, Shen Y, Wei L, Min W 2015. Angew. Chem. Int. Ed. 54:34982125
    [Google Scholar]
  75. 74.
    Hong W, Karanja CW, Abutaleb NS, Younis W, Zhang X et al. 2018. Anal. Chem. 90:6373743
    [Google Scholar]
  76. 75.
    Beard DA. 2005. PLOS Comput. Biol. 1:4e36
    [Google Scholar]
  77. 76.
    Korzeniewski B, Zoladz JA. 2001. Biophys. Chem. 92:1/21734
    [Google Scholar]
  78. 77.
    Jin Q, Bethke CM 2002. Biophys. J. 83:41797808
    [Google Scholar]
  79. 78.
    Chang I, Heiske M, Letellier T, Wallace D, Baldi P. 2011. PLOS ONE 6:9e14820
    [Google Scholar]
  80. 79.
    Imamura H, Nhat KPH, Togawa H, Saito K, Iino R et al. 2009. PNAS 106:371565156
    [Google Scholar]
  81. 80.
    Berg J, Hung YP, Yellen G. 2009. Nat. Methods 6:216166
    [Google Scholar]
  82. 81.
    Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA. 2011. Biotechniques 50:298115
    [Google Scholar]
  83. 82.
    Hung YP, Albeck JG, Tantama M, Yellen G. 2011. Cell Metab. 14:454554
    [Google Scholar]
  84. 83.
    San Martin A, Ceballo S, Baeza-Lehnert F, Lerchundi R, Valdebenito R et al. 2014. PLOS ONE 9:e85780
    [Google Scholar]
  85. 84.
    San Martin A, Ceballo S, Ruminot I, Lerchundi R, Frommer WB, Barros LF. 2013. PLOS ONE 8:2e57712
    [Google Scholar]
  86. 85.
    Diaz-Garcia CM, Lahmann C, Martinez-Francois JR, Li B, Koveal D et al. 2019. J. Neurosci. Res. 97:894660
    [Google Scholar]
  87. 86.
    Blacker TS, Mann ZF, Gale JE, Ziegler M, Bain AJ et al. 2014. Nat. Commun. 5:3936
    [Google Scholar]
  88. 87.
    Mason GF, Behar KL, Rothman DL, Shulman RG. 1992. J. Cereb. Blood Flow Metab. 12:344855
    [Google Scholar]
  89. 88.
    Oh S, Lee C, Fu D, Yang W, Li A et al. PNAS 119:17e2117938119
    [Google Scholar]
  90. 89.
    Bae J, Zheng J, Zhang H, Foster PJ, Needleman DJ, Vlassak JJ. 2021. Adv. Sci. 8:52003415
    [Google Scholar]
  91. 90.
    Hong S, Dechaumphai E, Green CR, Lal R, Murphy AN et al. 2020. Nat. Commun. 11:2982
    [Google Scholar]
  92. 91.
    Hur S, Mittapally R, Yadlapalli S, Reddy P, Meyhofer E. 2020. Nat. Commun. 11:2983
    [Google Scholar]
  93. 92.
    Braissant O, Wirz D, Göpfert B, Daniels AU. 2010. FEMS Microb. Lett. 303:18
    [Google Scholar]
  94. 93.
    Astasov-Frauenhoffer M, Braissant O, Hauser-Gerspach I, Daniels AU, Weiger R, Waltimo T. 2012. FEMS Microb. Lett. 337:3137
    [Google Scholar]
  95. 94.
    Corvec S, Seiler E, Wang L, Moreno MG, Trampuz A. 2020. Anaerobe 66:102282
    [Google Scholar]
  96. 95.
    Recht MI, De Bruyker D, Bell AG, Wolkin MV, Peeters E et al. 2008. Anal. Biochem. 377:3339
    [Google Scholar]
  97. 96.
    Johannessen EA, Weaver JMR, Bourova L, Svoboda P, Cobbold PH, Cooper JM. 2002. Anal. Chem. 74:9219097
    [Google Scholar]
  98. 97.
    Morais FM, Buchholz F, Maskow T 2014. Microbial Biofilms: Methods and Protocols G Donelli 26775. Methods Mol. Biol . Vol. 1147 New York: Springer
    [Google Scholar]
  99. 98.
    Whittam R. 1962. Biochem. J. 82:205
    [Google Scholar]
  100. 99.
    Rodenfels J, Neugebauer KM, Howard J. 2019. Dev. Cell 48:564658.e6
    [Google Scholar]
  101. 100.
    Engl E, Attwell D. 2015. J. Physiol. 593:16341729
    [Google Scholar]
  102. 101.
    Bernstein BW, Bamburg JR. 2003. J. Neurosci. 23:116
    [Google Scholar]
  103. 102.
    Chen D, Heymann M, Fraden S, Nicastro D, Dogic Z. 2015. Biophys. J. 109:12256273
    [Google Scholar]
  104. 103.
    Laughlin SB, de Ruyter van Steveninck RR, Anderson JC. 1998. Nat. Neurosci. 1:3641
    [Google Scholar]
  105. 104.
    Mahmoudabadi G, Milo R, Phillips R 2017. PNAS 114:22E432433
    [Google Scholar]
  106. 105.
    Li J, Horowitz JM, Gingrich TR, Fakhri N. 2019. Nat. Commun. 10:1666
    [Google Scholar]
  107. 106.
    Battle C, Broedersz CP, Fakhri N, Geyer VF, Howard J et al. 2016. Science 352:62856047
    [Google Scholar]
  108. 107.
    Tan TH, Watson GA, Chao YC, Li J, Gingrich TR et al. 2021. arXiv:2107.05701 [physics.bio-ph]
  109. 108.
    Song Y, Hyeon C 2021. eLife 10:e70034
    [Google Scholar]
  110. 109.
    Lan G, Sartori P, Neumann S, Sourjik V, Tu Y. 2012. Nat. Phys. 8:42228
    [Google Scholar]
  111. 110.
    Horowitz J, Gingrich T. 2020. Nat. Phys. 16:1520
    [Google Scholar]
  112. 111.
    Fang X, Kruse K, Lu T, Wang J 2019. Rev. Mod. Phys. 91:045004
    [Google Scholar]
  113. 112.
    Harada T, Sasa Si 2005. Phys. Rev. Lett. 95:130602
    [Google Scholar]
  114. 113.
    Toyabe S, Jiang HR, Nakamura T, Murayama Y, Sano M. 2007. Phys. Rev. E 75:011122
    [Google Scholar]
  115. 114.
    Harada T, Sasa Si 2007. Math. Biosci. 207:236586
    [Google Scholar]
  116. 115.
    Fodor E, Ahmed WW, Almonacid M, Bussonnier M, Gov NS et al. 2016. Europhys. Lett. 116:030008
    [Google Scholar]
  117. 116.
    Bohec P, Tailleur J, van Wijland F, Richert A, Gallet F. 2019. Soft Matter 15:35695266
    [Google Scholar]
  118. 117.
    Jones C, Gomez M, Muoio RM, Vidal A, Mcknight RA et al. 2021. Phys. Rev. E 103:032403
    [Google Scholar]
  119. 118.
    Nardini C, Fodor E, Tjhung E, van Wijland F, Tailleur J, Cates ME. 2017. Phys. Rev. X 7:021007
    [Google Scholar]
  120. 119.
    Muy S, Kundu A, Lacoste D. 2013. J. Chem. Phys. 139:124109
    [Google Scholar]
  121. 120.
    Dechant A, Sasa Si 2021. Phys. Rev. X 11:041061
    [Google Scholar]
  122. 121.
    Gingrich TR, Rotskoff GM, Horowitz JM. 2017. J. Phys. A Math. Theor. 50:184004
    [Google Scholar]
  123. 122.
    Barato AC, Seifert U. 2015. Phys. Rev. Lett. 114:158101
    [Google Scholar]
  124. 123.
    Wang J. 2015. Adv. Phys. 64:11137
    [Google Scholar]
  125. 124.
    Schavemaker PE, Lynch M 2022. eLife 11:e77266
    [Google Scholar]
  126. 125.
    Basan M, Hui S, Okano H, Zhang Z, Shen Y et al. 2015. Nature 528:758099104
    [Google Scholar]
  127. 126.
    Trickovic B, Lynch M 2022. bioRxiv 2022.01.07.475415. https://doi.org/10.1101/2022.01.07.475415
  128. 127.
    Niebel B, Leupold S, Heinemann M. 2019. Nat. Metab. 1:12532
    [Google Scholar]
  129. 128.
    Singharoy A, Maffeo C, Delgado-Magnero KH, Swainsbury DJ, Sener M et al. 2019. Cell 179:51098111
    [Google Scholar]
  130. 129.
    Martin JL, Ishmukhametov R, Spetzler D, Hornung T, Frasch WD. 2018. PNAS 115:22575055
    [Google Scholar]
  131. 130.
    Brettel R, Lamprecht I, Schaarschmidt B. 1981. Thermochim. Acta 49:5361
    [Google Scholar]
  132. 131.
    Kooragayala K, Gotoh N, Cogliati T, Nellissery J, Kaden TR et al. 2015. Investig. Ophthalmol. Vis. Sci. 56:13842836
    [Google Scholar]
  133. 132.
    Neville KE, Bosse TL, Klekos M, Mills JF, Weicksel SE et al. 2018. J. Neurosci. Methods 296:3243
    [Google Scholar]
  134. 133.
    Koopman M, Michels H, Dancy BM, Kamble R, Mouchiroud L et al. 2016. Nat. Protoc. 11:101798816
    [Google Scholar]
  135. 134.
    Astrup J, Sorensen PM, Sorensen HR. 1981. Stroke 12:672630
    [Google Scholar]
  136. 135.
    Engl E, Jolivet R, Hall CN, Attwell D. 2017. J. Cereb. Blood Flow Metab. 37:395166
    [Google Scholar]
  137. 136.
    Robador A, Amend JP, Finkel SE. 2019. Appl. Environ. Microb. 85:15e00968–19
    [Google Scholar]
  138. 137.
    Peitzsch M, Kiesel B, Harms H, Maskow T. 2008. Chem. Eng. Process. Process Intensif. 47:610006
    [Google Scholar]
  139. 138.
    Tourmente M, Villar-Moya P, Rial E, Roldan ERS 2015. J. Biol. Chem. 290:332061326
    [Google Scholar]
  140. 139.
    Dietz MW, van Kampen M, van Griensven MJM, van Mourik S. 1998. Physiol. Zool. 71:214756
    [Google Scholar]
  141. 140.
    Nagano Y, Ode KL. 2014. Phys. Biol. 11:046008
    [Google Scholar]
  142. 141.
    Ghosh S, Körte A, Serafini G, Yadav V, Rodenfels J. 2022. Semin. Cell Dev. Biol. 138:8393
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031620-105251
Loading
/content/journals/10.1146/annurev-conmatphys-031620-105251
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error