1932

Abstract

In condensed matter physics, magnetic skyrmions, topologically stabilized magnetic solitons, have been discovered in various materials systems, which has intrigued the community in terms of not only fundamental physics but also with respect to engineering applications. In particular, skyrmions in thin films are easily manipulable by electrical means even at room temperature. Concomitantly, a variety of possible applications have been proposed and proof-of-concept devices have been demonstrated. Recently, the field of skyrmion-based electronics has been referred to as skyrmionics and this field has been rapidly growing and extended in multiple directions. This review provides recent progress for skyrmion research in thin film systems and we discuss promising new directions, which will further invigorate the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031620-110344
2022-03-10
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/13/1/annurev-conmatphys-031620-110344.html?itemId=/content/journals/10.1146/annurev-conmatphys-031620-110344&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Skyrme THR. 1962. Nucl. Phys. 31:556–69
    [Google Scholar]
  2. 2. 
    Braun H-B. 2012. Adv. Phys. 61:11–116
    [Google Scholar]
  3. 3. 
    Ho T-L. 1998. Phys. Rev. Lett. 81:4742–45
    [Google Scholar]
  4. 4. 
    Rößler UK, Bogdanov AN, Pfleiderer C. 2006. Nature 442:7104797–801
    [Google Scholar]
  5. 5. 
    Tsesses S, Ostrovsky E, Cohen K, Gjonaj B, Lindner NH, Bartal G. 2018. Science 361:6406993–96
    [Google Scholar]
  6. 6. 
    Bogdanov AN, Yablonskii DA. 1989. Zh. Eksp. Teor. Fiz. 95:1178–82
    [Google Scholar]
  7. 7. 
    Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A et al. 2009. Science 323:5916915–19
    [Google Scholar]
  8. 8. 
    Yu XZ, Onose Y, Kanazawa N, Park JH, Han JH et al. 2010. Nature 465:7300901–4
    [Google Scholar]
  9. 9. 
    Fert AR. 1990. Mater. Sci. Forum. 59–60:439–80
    [Google Scholar]
  10. 10. 
    Crépieux A, Lacroix C. 1998. J. Magn. Magn. Mater. 182:3341–49
    [Google Scholar]
  11. 11. 
    Bode M, Heide M, von Bergmann K, Ferriani P, Heinze S et al. 2007. Nature 447:7141190–93
    [Google Scholar]
  12. 12. 
    Jiang W, Chen G, Liu K, Zang J, te Velthuis SGE, Hoffmann A. 2017. Phys. Rep. 704:1–49
    [Google Scholar]
  13. 13. 
    Everschor-Sitte K, Masell J, Reeve RM, Kläui M. 2018. J. Appl. Phys. 124:24240901
    [Google Scholar]
  14. 14. 
    Büttner F, Moutafis C, Schneider M, Krüger B, Günther CM et al. 2015. Nat. Phys. 11:3225–28
    [Google Scholar]
  15. 15. 
    Derrick GH. 1964. J. Math. Phys. 5:91252–54
    [Google Scholar]
  16. 16. 
    de Leeuw FH. 1977. J. Magn. Magn. Mater. 6:183–85
    [Google Scholar]
  17. 17. 
    Dzyaloshinsky I. 1958. J. Phys. Chem. Solids. 4:4241–55
    [Google Scholar]
  18. 18. 
    Moriya T. 1960. Phys. Rev. 120:191–98
    [Google Scholar]
  19. 19. 
    Leonov AO, Monchesky TL, Romming N, Kubetzka A, Bogdanov AN, Wiesendanger R. 2016. New J. Phys. 18:6065003
    [Google Scholar]
  20. 20. 
    Fert A, Cros V, Sampaio J. 2013. Nat. Nanotechnol. 8:3152–56
    [Google Scholar]
  21. 21. 
    Ferriani P, von Bergmann K, Vedmedenko EY, Heinze S, Bode M et al. 2008. Phys. Rev. Lett. 101:2027201
    [Google Scholar]
  22. 22. 
    Heide M, Bihlmayer G, Blügel S. 2008. Phys. Rev. B. 78:14140403(R)
    [Google Scholar]
  23. 23. 
    Thiaville A, Rohart S, Jué É, Cros V, Fert A. 2012. Europhys. Lett. 100:557002
    [Google Scholar]
  24. 24. 
    Ryu K-S, Thomas L, Yang S-H, Parkin S. 2013. Nat. Nanotechnol. 8:527–33
    [Google Scholar]
  25. 25. 
    Emori S, Bauer U, Ahn S-M, Martinez E, Beach GSD. 2013. Nat. Mater. 12:7611–16
    [Google Scholar]
  26. 26. 
    Zhang X, Zhou Y, Mee Song K, Park T-E, Xia J et al. 2020. J. Phys.: Condens. Matter. 32:14143001
    [Google Scholar]
  27. 27. 
    Finocchio G, Büttner F, Tomasello R, Carpentieri M, Kläui M. 2016. J. Phys. D: Appl. Phys. 49:42423001
    [Google Scholar]
  28. 28. 
    Tokura Y, Kanazawa N. 2021. Chem. Rev. 121:52857–97
    [Google Scholar]
  29. 29. 
    Back C, Cros V, Ebert H, Everschor-Sitte K, Fert A et al. 2020. J. Phys. D: Appl. Phys. 53:36363001
    [Google Scholar]
  30. 30. 
    Göbel B, Mertig I, Tretiakov OA. 2021. Phys. Rep. 895:1–28
    [Google Scholar]
  31. 31. 
    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A et al. 2011. Nat. Phys. 7:9713–18
    [Google Scholar]
  32. 32. 
    Romming N, Hanneken C, Menzel M, Bickel JE, Wolter B et al. 2013. Science 341:6146636–39
    [Google Scholar]
  33. 33. 
    Hanneken C, Otte F, Kubetzka A, Dupé B, Romming N et al. 2015. Nat. Nanotechnol. 10:121039–42
    [Google Scholar]
  34. 34. 
    Romming N, Kubetzka A, Hanneken C. 2015. Phys. Rev. Lett. 114:177203
    [Google Scholar]
  35. 35. 
    Hsu P-J, Kubetzka A, Finco A, Romming N, von Bergmann K, Wiesendanger R 2017. Nat. Nanotechnol. 12:2123–26
    [Google Scholar]
  36. 36. 
    Hsu P-J, Rózsa L, Finco A, Schmidt L, Palotás K et al. 2018. Nat. Commun. 9:1571
    [Google Scholar]
  37. 37. 
    Winter JM. 1961. Phys. Rev. 124:2452–59
    [Google Scholar]
  38. 38. 
    Büttner F, Krüger B, Eisebitt S, Kläui M. 2015. Phys. Rev. B. 92:5054408
    [Google Scholar]
  39. 39. 
    Hervé M, Dupé B, Lopes R, Böttcher M, Martins MD et al. 2018. Nat. Commun. 9:11015
    [Google Scholar]
  40. 40. 
    Bogdanov A, Hubert A. 1994. Phys. Stat. Sol. (b). 186:2527–43
    [Google Scholar]
  41. 41. 
    Rohart S, Thiaville A. 2013. Phys. Rev. B. 88:18184422
    [Google Scholar]
  42. 42. 
    Meyer S, Perini M, von Malottki S, Kubetzka A, Wiesendanger R et al. 2019. Nat. Commun. 10:13823
    [Google Scholar]
  43. 43. 
    von Malottki S, Dupé B, Bessarab PF, Delin A, Heinze S. 2017. Sci. Rep. 7:112299
    [Google Scholar]
  44. 44. 
    Romming N, Pralow H, Kubetzka A, Hoffmann M, von Malottki S et al. 2018. Phys. Rev. Lett. 120:20207201
    [Google Scholar]
  45. 45. 
    Paul S, Haldar S, von Malottki S, Heinze S. 2020. Nat. Commun. 11:14756
    [Google Scholar]
  46. 46. 
    Hoffmann M, Zimmermann B, Müller GP, Schürhoff D, Kiselev NS et al. 2017. Nat. Commun. 8:1308
    [Google Scholar]
  47. 47. 
    Rózsa L, Palotás K, Deák A, Simon E, Yanes R et al. 2017. Phys. Rev. B. 95:9094423
    [Google Scholar]
  48. 48. 
    Nayak AK, Kumar V, Ma T, Werner P, Pippel E et al. 2017. Nature 548:7669561–66
    [Google Scholar]
  49. 49. 
    Yu XZ, Koshibae W, Tokunaga Y, Shibata K, Taguchi Y et al. 2018. Nature 564:773495–98
    [Google Scholar]
  50. 50. 
    Camosi L, Garcia JP, Fruchart O, Pizzini S, Locatelli A et al. 2021. New J. Phys. 23:1013020
    [Google Scholar]
  51. 51. 
    Camosi L, Rohart S, Fruchart O, Pizzini S, Belmeguenai M et al. 2017. Phys. Rev. B. 95:21214422
    [Google Scholar]
  52. 52. 
    Tsurkan S, Zakeri KH. 2020. Phys. Rev. B. 102:6060406
    [Google Scholar]
  53. 53. 
    Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch MB et al. 2015. Science 349:6245283–86
    [Google Scholar]
  54. 54. 
    Jiang W, Zhang X, Yu G, Zhang W, Wang X et al. 2017. Nat. Phys. 13:2162–69
    [Google Scholar]
  55. 55. 
    Yu G, Upadhyaya P, Li X, Li W, Kim SK et al. 2016. Nano Lett 16:31981–88
    [Google Scholar]
  56. 56. 
    Boulle O, Vogel J, Yang H, Pizzini S, de Souza Chaves D et al. 2016. Nat. Nanotechnol. 11:5449–54
    [Google Scholar]
  57. 57. 
    Zázvorka J, Jakobs F, Heinze D, Keil N, Kromin S et al. 2019. Nat. Nanotechnol. 14:7658–61
    [Google Scholar]
  58. 58. 
    Zázvorka J, Dittrich F, Ge Y, Kerber N, Raab K et al. 2020. Adv. Funct. Mater. 30:2004037
    [Google Scholar]
  59. 59. 
    Nozaki T, Jibiki Y, Goto M, Tamura E, Nozaki T et al. 2019. Appl. Phys. Lett. 114:1012402
    [Google Scholar]
  60. 60. 
    Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz CAF et al. 2016. Nat. Nanotechnol. 11:5444–48
    [Google Scholar]
  61. 61. 
    Woo S, Litzius K, Krüger B, Im M-Y, Caretta L et al. 2016. Nat. Mater. 15:501–6
    [Google Scholar]
  62. 62. 
    Hrabec A, Sampaio J, Belmeguenai M, Gross I, Weil R et al. 2017. Nat. Commun. 8:15765
    [Google Scholar]
  63. 63. 
    Soumyanarayanan A, Raju M, Gonzalez Oyarce AL, Tan AKC, Im M-Y et al. 2017. Nat. Mater. 16:9898–904
    [Google Scholar]
  64. 64. 
    Pollard SD, Garlow JA, Yu J, Wang Z, Zhu Y, Yang H. 2017. Nat. Commun. 8:114761
    [Google Scholar]
  65. 65. 
    Büttner F, Lemesh I, Schneider M, Pfau B, Günther CM et al. 2017. Nat. Nanotechnol. 12:1040–44
    [Google Scholar]
  66. 66. 
    Zeissler K, Mruczkiewicz M, Finizio S, Raabe J, Shepley PM et al. 2017. Sci. Rep. 7:115125
    [Google Scholar]
  67. 67. 
    Legrand W, Maccariello D, Reyren N, Garcia K, Moutafis C et al. 2017. Nano Lett 17:2703–12
    [Google Scholar]
  68. 68. 
    Yagil A, Almoalem A, Soumyanarayanan A, Tan AKC, Raju M et al. 2018. Appl. Phys. Lett. 112:19192403
    [Google Scholar]
  69. 69. 
    Ezawa M. 2010. Phys. Rev. Lett. 105:197202
    [Google Scholar]
  70. 70. 
    Schott M, Bernand-Mantel A, Ranno L, Pizzini S, Vogel J et al. 2017. Nano Lett 17:53006–12
    [Google Scholar]
  71. 71. 
    Zelent M, Tóbik J, Krawczyk M, Guslienko KY, Mruczkiewicz M. 2017. Phys. Status Solidi RRL. 11:1700259
    [Google Scholar]
  72. 72. 
    Lemesh I, Büttner F, Beach GSD. 2017. Phys. Rev. B. 95:174423
    [Google Scholar]
  73. 73. 
    Büttner F, Lemesh I, Beach GSD. 2018. Sci. Rep. 8:4464
    [Google Scholar]
  74. 74. 
    Legrand W, Ronceray N, Reyren N, Maccariello D, Cros V, Fert A. 2018. Phys. Rev. Appl. 10:064042
    [Google Scholar]
  75. 75. 
    Legrand W, Chauleau J-Y, Maccariello D, Reyren N, Collin S et al. 2018. Sci. Adv. 4:eaat0415
    [Google Scholar]
  76. 76. 
    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A. 2013. Nat. Nanotechnol. 8:11839–44
    [Google Scholar]
  77. 77. 
    Ho P, Tan AKC, Goolaup S, Oyarce ALG, Raju M et al. 2019. Phys. Rev. Appl. 11:2024064
    [Google Scholar]
  78. 78. 
    Chen G, Mascaraque A, N'Diaye AT, Schmid AK 2015. Appl. Phys. Lett. 106:242404
    [Google Scholar]
  79. 79. 
    Yu G, Jenkins A, Ma X, Razavi SA, He C et al. 2018. Nano Lett 18:980–86
    [Google Scholar]
  80. 80. 
    Guang Y, Bykova I, Liu Y, Yu G, Goering E et al. 2020. Nat. Commun. 11:1949
    [Google Scholar]
  81. 81. 
    Rana KG, Finco A, Fabre F, Chouaieb S, Haykal A et al. 2020. Phys. Rev. Appl. 13:4044079
    [Google Scholar]
  82. 82. 
    Woo S, Song KM, Zhang X, Zhou Y, Ezawa M et al. 2018. Nat. Commun. 9:1959
    [Google Scholar]
  83. 83. 
    Caretta L, Mann M, Büttner F, Ueda K, Pfau B et al. 2018. Nat. Nanotechnol. 13:121154–60
    [Google Scholar]
  84. 84. 
    Dohi T, DuttaGupta S, Fukami S, Ohno H. 2019. Nat. Commun. 10:15153
    [Google Scholar]
  85. 85. 
    Legrand W, Maccariello D, Ajejas F, Collin S, Vecchiola A et al. 2020. Nat. Mater. 19:34–42
    [Google Scholar]
  86. 86. 
    Zhang X, Zhou Y, Ezawa M. 2016. Nat. Commun. 7:110293
    [Google Scholar]
  87. 87. 
    Barker J, Tretiakov OA. 2016. Phys. Rev. Lett. 116:14147203
    [Google Scholar]
  88. 88. 
    Hirata Y, Kim D-H, Kim SK, Lee D-K, Oh S-H et al. 2019. Nat. Nanotechnol. 14:3232–36
    [Google Scholar]
  89. 89. 
    Shen Y, Liang L, Zhang S, Huang D, Zhang J et al. 2020. Nanoscale 12:3518137–43
    [Google Scholar]
  90. 90. 
    Seng B, Schönke D, Yeste J, Reeve RM, Kerber N et al. 2021. Adv. Funct. Mater. 2102307:1–7
    [Google Scholar]
  91. 91. 
    Morshed MG, Khoo KH, Quessab Y, Xu J-W, Laskowski R et al. 2021. Phys. Rev. B. 103:17174414
    [Google Scholar]
  92. 92. 
    Quessab Y, Xu J-W, Ma CT, Zhou W, Riley GA et al. 2020. Sci. Rep. 10:17447
    [Google Scholar]
  93. 93. 
    Streubel R, Lambert C-H, Kent N, Ercius P, N'Diaye AT et al. 2018. Adv. Mater. 30:271800199
    [Google Scholar]
  94. 94. 
    Wu H, Groß F, Dai B, Lujan D, Razavi SA et al. 2020. Adv. Mater. 32:342003380
    [Google Scholar]
  95. 95. 
    Ma CT, Xie Y, Sheng H, Ghosh AW, Poon SJ. 2019. Sci. Rep. 9:19964
    [Google Scholar]
  96. 96. 
    Avci CO, Rosenberg E, Caretta L, Büttner F, Mann M et al. 2019. Nat. Nanotechnol. 14:6561–66
    [Google Scholar]
  97. 97. 
    Ding S, Ross A, Lebrun R, Becker S, Lee K et al. 2019. Phys. Rev. B. 100:10100406
    [Google Scholar]
  98. 98. 
    Caretta L, Rosenberg E, Büttner F, Fakhrul T, Gargiani P et al. 2020. Nat. Commun. 11:11090
    [Google Scholar]
  99. 99. 
    Ding S, Baldrati L, Ross A, Ren Z, Wu R et al. 2020. Phys. Rev. B. 102:5054425
    [Google Scholar]
  100. 100. 
    Vélez S, Schaab J, Wörnle MS, Müller M, Gradauskaite E et al. 2019. Nat. Commun. 10:14750
    [Google Scholar]
  101. 101. 
    Caretta L, Oh S-H, Fakhrul T, Lee D-K, Lee BH et al. 2020. Science 370:1438–42
    [Google Scholar]
  102. 102. 
    Kent N, Reynolds N, Raftrey D, Campbell ITG, Virasawmy S et al. 2021. Nat. Commun. 12:11562
    [Google Scholar]
  103. 103. 
    Mandru A-O, Yıldırım O, Tomasello R, Heistracher P, Penedo M et al. 2020. Nat. Commun. 11:16365
    [Google Scholar]
  104. 104. 
    Zhang X, Xia J, Zhou Y, Wang D, Liu X et al. 2016. Phys. Rev. B. 94:9094420
    [Google Scholar]
  105. 105. 
    Kolesnikov AG, Stebliy ME, Samardak AS, Ognev AV. 2018. Sci Rep 8:116966
    [Google Scholar]
  106. 106. 
    Göbel B, Schäffer AF, Berakdar J, Mertig I, Parkin SSP. 2019. Sci. Rep. 9:112119
    [Google Scholar]
  107. 107. 
    Heigl M, Koraltan S, Vaňatka M, Kraft R, Abert C et al. 2021. Nat. Commun. 12:12611
    [Google Scholar]
  108. 108. 
    Han D-S, Lee K, Hanke J-P, Mokrousov Y, Kim K-W et al. 2019. Nat. Mater. 18:703–8
    [Google Scholar]
  109. 109. 
    Fernández-Pacheco A, Vedmedenko E, Ummelen F, Mansell R, Petit D, Cowburn RP. 2019. Nat. Mater. 18:679–84
    [Google Scholar]
  110. 110. 
    Kim D-H, Haruta M, Ko H-W, Go G, Park H-J et al. 2019. Nat. Mater. 18:7685–90
    [Google Scholar]
  111. 111. 
    Burch KS, Mandrus D, Park J-G. 2018. Nature 563:772947–52
    [Google Scholar]
  112. 112. 
    Wu Y, Zhang S, Zhang J, Wang W, Zhu YL et al. 2020. Nat. Commun. 11:3860
    [Google Scholar]
  113. 113. 
    Yang M, Li Q, Chopdekar RV, Dhall R, Turner J et al. 2020. Sci. Adv. 6:36eabb5157
    [Google Scholar]
  114. 114. 
    Ding B, Li Z, Xu G, Li H, Hou Z et al. 2020. Nano Lett 20:2868–73
    [Google Scholar]
  115. 115. 
    Han M-G, Garlow JA, Liu Y, Zhang H, Li J et al. 2019. Nano Lett 19:117859–65
    [Google Scholar]
  116. 116. 
    Meijer MJ, Lucassen J, Duine RA, Swagten HJM, Koopmans B et al. 2020. Nano Lett 20:128563–68
    [Google Scholar]
  117. 117. 
    van Walsem E, Duine RA, Guimarães MHD. 2020. Phys. Rev. B. 102:17174403
    [Google Scholar]
  118. 118. 
    Laref S, Kim K-W, Manchon A. 2020. Phys. Rev. B. 102:6060402
    [Google Scholar]
  119. 119. 
    Park T-E, Peng L, Liang J, Hallal A, Yasin FS et al. 2021. Phys. Rev. B. 103:104410
    [Google Scholar]
  120. 120. 
    Ochoa H, Tserkovnyak Y. 2019. Int. J. Mod. Phys. B. 33:211930005
    [Google Scholar]
  121. 121. 
    Chen W, Schnyder AP. 2015. Phys. Rev. B. 92:21214502
    [Google Scholar]
  122. 122. 
    Kubetzka A, Bürger JM, Wiesendanger R, von Bergmann K. 2020. Phys. Rev. Mater. 4:8081401
    [Google Scholar]
  123. 123. 
    Nagaosa N, Tokura Y. 2013. Nat. Nanotechnol. 8:12899–911
    [Google Scholar]
  124. 124. 
    Tatara G. 2019. Phys. E Low Dimens. Syst. Nanostruct. 106:208–38
    [Google Scholar]
  125. 125. 
    He M, Peng L, Zhu Z, Li G, Cai J et al. 2017. Appl. Phys. Lett. 111:20202403
    [Google Scholar]
  126. 126. 
    Maccariello D, Legrand W, Reyren N, Garcia K, Bouzehouane K et al. 2018. Nat. Nanotechnol. 13:233–37
    [Google Scholar]
  127. 127. 
    Zeissler K, Finizio S, Shahbazi K, Massey J, Ma'Mari FA et al. 2018. Nat. Nanotechnol. 13:121161–66
    [Google Scholar]
  128. 128. 
    Raju M, Yagil A, Soumyanarayanan A, Tan AKC, Almoalem A et al. 2019. Nat. Commun. 10:696
    [Google Scholar]
  129. 129. 
    Wang Z, Guo M, Zhou H-A, Zhao L, Xu T et al. 2020. Nat. Electron. 3:672–79
    [Google Scholar]
  130. 130. 
    Fernández Scarioni A, Barton C, Corte-León H, Sievers S, Hu X et al. 2021. Phys. Rev. Lett. 126:7077202
    [Google Scholar]
  131. 131. 
    Nakazawa K, Bibes M, Kohno H. 2018. J. Phys. Soc. Jpn. 87:3033705
    [Google Scholar]
  132. 132. 
    Denisov KS, Rozhansky IV, Averkiev NS, Lähderanta E. 2018. Phys. Rev. B. 98:19195439
    [Google Scholar]
  133. 133. 
    Shao Q, Liu Y, Yu G, Kim SK, Che X et al. 2019. Nat. Electron. 2:182–86
    [Google Scholar]
  134. 134. 
    Ahmed AS, Lee AJ, Bagués N, McCullian BA, Thabt AMA et al. 2019. Nano Lett 19:85683–88
    [Google Scholar]
  135. 135. 
    Lee AJ, Guo S, Flores J, Wang B, Bagués N et al. 2020. Nano Lett 20:64667–72
    [Google Scholar]
  136. 136. 
    Nakayama H, Althammer M, Chen Y-T, Uchida K, Kajiwara Y et al. 2013. Phys. Rev. Lett. 110:20206601
    [Google Scholar]
  137. 137. 
    dos Santos Dias M, Bouaziz J, Bouhassoune M, Blügel S, Lounis S. 2016. Nat. Commun. 7:113613
    [Google Scholar]
  138. 138. 
    Kan D, Moriyama T, Kobayashi K, Shimakawa Y. 2018. Phys. Rev. B. 98:18180408
    [Google Scholar]
  139. 139. 
    Gerber A. 2018. Phys. Rev. B. 98:21214440
    [Google Scholar]
  140. 140. 
    Meng KK, Zhu LJ, Jin ZH, Liu EK, Zhao XP et al. 2019. Phys. Rev. B. 100:18184410
    [Google Scholar]
  141. 141. 
    Akosa CA, Ndiaye PB, Manchon A. 2017. Phys. Rev. B. 95:5054434
    [Google Scholar]
  142. 142. 
    Göbel B, Mook A, Henk J, Mertig I. 2017. Phys. Rev. B. 96:6060406
    [Google Scholar]
  143. 143. 
    Buhl PM, Freimuth F, Blügel S, Mokrousov Y. 2017. Phys. Status Solidi RRL. 11:1700007
    [Google Scholar]
  144. 144. 
    Akosa CA, Tretiakov OA, Tatara G, Manchon A. 2018. Phys. Rev. Lett. 121:097204
    [Google Scholar]
  145. 145. 
    Sinova J, Valenzuela SO, Wunderlich J, Back CH, Jungwirth T. 2015. Rev. Mod. Phys. 87:41213–60
    [Google Scholar]
  146. 146. 
    Manchon A, Železný J, Miron IM, Jungwirth T, Sinova J et al. 2019. Rev. Mod. Phys. 91:3035004
    [Google Scholar]
  147. 147. 
    Litzius K, Lemesh I, Krüger B, Bassirian P, Caretta L et al. 2017. Nat. Phys. 13:170–75
    [Google Scholar]
  148. 148. 
    Woo S, Song KM, Han H-S, Jung M-S, Im M-Y et al. 2017. Nat. Commun. 8:15573
    [Google Scholar]
  149. 149. 
    Zeissler K, Finizio S, Barton C, Huxtable AJ, Massey J et al. 2020. Nat. Commun. 11:1428
    [Google Scholar]
  150. 150. 
    Litzius K, Leliaert J, Bassirian P, Rodrigues D, Kromin S et al. 2020. Nat. Electron. 3:30–36
    [Google Scholar]
  151. 151. 
    Litzius K. 2018. Spin-orbit-induced dynamics of chiral magnetic structures PhD Thesis Johannes Gutenberg-Universität Mainz Mainz, Germ:.
    [Google Scholar]
  152. 151a. 
    Honda S, Tanaka M 2017. Jpn. J. Appl. Phys 56098001
    [Google Scholar]
  153. 152. 
    Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M, Finocchio G. 2014. Sci. Rep. 4:6784
    [Google Scholar]
  154. 153. 
    Juge R, Je S-G, Chaves D de S, Buda-Prejbeanu LD, Peña-Garcia J et al. 2019. Phys. Rev. Appl. 12:044007
    [Google Scholar]
  155. 154. 
    Reichhardt C, Reichhardt CJO. 2016. New J. Phys. 18:9095005
    [Google Scholar]
  156. 155. 
    Reichhardt C, Reichhardt CJO, Milosevic MV. 2021. arXiv:2102.10464 [cond-mat]
  157. 156. 
    Kim K-W, Moon K-W, Kerber N, Nothhelfer J, Everschor-Sitte K. 2018. Phys. Rev. B. 97:22224427
    [Google Scholar]
  158. 157. 
    Lemesh I, Beach GSD. 2019. Phys. Rev. Appl. 12:044031
    [Google Scholar]
  159. 158. 
    Kim K-J, Kim SK, Hirata Y, Oh S-H, Tono T et al. 2017. Nat. Mater. 16:121187–92
    [Google Scholar]
  160. 159. 
    Siddiqui SA, Han J, Finley JT, Ross CA, Liu L. 2018. Phys. Rev. Lett. 121:5057701
    [Google Scholar]
  161. 160. 
    Kammerbauer F. 2021. Tuning magnetic properties in thin film rare-earth transition-metal ferrimagnets MS Thesis Johannes Gutenberg-Universität Mainz Mainz, Germ:.
    [Google Scholar]
  162. 161. 
    Parkin SSP. 1991. Phys. Rev. Lett. 67:3598–3601
    [Google Scholar]
  163. 162. 
    Yakushiji K, Sugihara A, Fukushima A, Kubota H, Yuasa S. 2017. Appl. Phys. Lett. 110:9092406
    [Google Scholar]
  164. 163. 
    Koshibae W, Nagaosa N. 2017. Sci. Rep. 7:42645
    [Google Scholar]
  165. 164. 
    Salimath A, Zhuo F, Tomasello R, Finocchio G, Manchon A. 2020. Phys. Rev. B. 101:2024429
    [Google Scholar]
  166. 165. 
    Xia J, Zhang X, Mak K-Y, Ezawa M, Tretiakov OA et al. 2021. Phys. Rev. B. 103:17174408
    [Google Scholar]
  167. 166. 
    Zhou H-A, Dong Y, Xu T, Xu K, Sánchez-Tejerina L et al. 2019. arXiv:1912.01775
  168. 167. 
    Ross A, Lebrun R, Ulloa C, Grave DA, Kay A et al. 2020. Phys. Rev. B. 102:9094415
    [Google Scholar]
  169. 168. 
    Gao S, Rosales HD, Gómez Albarracín FA, Tsurkan V, Kaur G et al. 2020. Nature 586:782737–41
    [Google Scholar]
  170. 169. 
    Jani H, Lin J-C, Chen J, Harrison J, Maccherozzi F et al. 2021. Nature 590:784474–79
    [Google Scholar]
  171. 170. 
    Martin F, Lee K, Schmitt M, Simensen TH, Scholz T et al. 2021. arXiv:2107.09420
  172. 171. 
    Yokouchi T, Sugimoto S, Rana B, Seki S, Ogawa N et al. 2020. Nat. Nanotechnol. 15:5361–66
    [Google Scholar]
  173. 172. 
    Fallon K, Hughes S, Zeissler K, Legrand W, Ajejas F et al. 2020. Small 16:131907450
    [Google Scholar]
  174. 173. 
    Zhao L, Wang Z, Zhang X, Liang X, Xia J et al. 2020. Phys. Rev. Lett. 125:2027206
    [Google Scholar]
  175. 174. 
    Jibiki Y, Goto M, Tamura E, Cho J, Miki S et al. 2020. Appl. Phys. Lett. 117:8082402
    [Google Scholar]
  176. 175. 
    Kerber N, Weißenhofer M, Raab K, Litzius K, Zázvorka J et al. 2021. Phys. Rev. Appl. 15:4044029
    [Google Scholar]
  177. 176. 
    Song C, Kerber N, Rothörl J, Ge Y, Raab K et al. 2021. Adv. Funct. Mater. 31:192010739
    [Google Scholar]
  178. 177. 
    Schütte C, Iwasaki J, Rosch A, Nagaosa N. 2014. Phys. Rev. B. 90:17174434
    [Google Scholar]
  179. 178. 
    Pinna D, Abreu Araujo F, Kim J-V, Cros V, Querlioz D et al. 2018. Phys. Rev. Appl. 9:6064018
    [Google Scholar]
  180. 179. 
    Weißenhofer M, Nowak U. 2020. New J. Phys. 22:10103059
    [Google Scholar]
  181. 180. 
    Bennett CH. 1982. Int. J. Theor. Phys. 21:905–40
    [Google Scholar]
  182. 181. 
    Toyabe S, Sagawa T, Ueda M, Muneyuki E, Sano M. 2010. Nat. Phys. 6:12988–92
    [Google Scholar]
  183. 182. 
    Parrondo JMR, Horowitz JM, Sagawa T. 2015. Nat. Phys. 11:2131–39
    [Google Scholar]
  184. 183. 
    Kapfer SC, Krauth W. 2015. Phys. Rev. Lett. 114:3035702
    [Google Scholar]
  185. 184. 
    Halperin BI, Nelson DR. 1978. Phys. Rev. Lett. 41:2121–24
    [Google Scholar]
  186. 185. 
    Nelson DR, Halperin BI. 1979. Phys. Rev. B. 19:52457–84
    [Google Scholar]
  187. 186. 
    Nishikawa Y, Hukushima K, Krauth W. 2019. Phys. Rev. B. 99:6064435
    [Google Scholar]
  188. 187. 
    Brown BL, Täuber UC, Pleimling M. 2018. Phys. Rev. B. 97:2020405
    [Google Scholar]
  189. 188. 
    Huang P, Schönenberger T, Cantoni M, Heinen L, Magrez A et al. 2020. Nat. Nanotechnol. 15:9761–67
    [Google Scholar]
  190. 189. 
    Kläui M. 2020. Nat. Nanotechnol. 15:726–27
    [Google Scholar]
  191. 190. 
    Du H, Zhao X, Rybakov FN, Borisov AB, Wang S et al. 2018. Phys. Rev. Lett. 120:197203
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031620-110344
Loading
/content/journals/10.1146/annurev-conmatphys-031620-110344
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error