1932

Abstract

Active systems evade the rules of equilibrium thermodynamics by constantly dissipating energy at the level of their microscopic components. This energy flux stems from the conversion of a fuel, present in the environment, into sustained individual motion. It can lead to collective effects without any equilibrium equivalent, some of which can be rationalized by using equilibrium tools to recapitulate nonequilibrium transitions. An important challenge is then to delineate systematically to what extent the character of these active transitions is genuinely distinct from equilibrium analogs. We review recent works that use stochastic thermodynamics tools to identify, for active systems, a measure of irreversibility comprising a coarse-grained or informatic entropy production. We describe how this relates to the underlying energy dissipation or thermodynamic entropy production, and how it is influenced by collective behavior. Then, we review the possibility of constructing thermodynamic ensembles out of equilibrium, where trajectories are biased toward atypical values of nonequilibrium observables. We show that this is a generic route to discovering unexpected phase transitions in active matter systems, which can also inform their design.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031720-032419
2022-03-10
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/13/1/annurev-conmatphys-031720-032419.html?itemId=/content/journals/10.1146/annurev-conmatphys-031720-032419&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J et al. 2013. Rev. Mod. Phys. 85:1143–89
    [Google Scholar]
  2. 2. 
    Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G, Volpe G. 2016. Rev. Mod. Phys. 88:045006
    [Google Scholar]
  3. 3. 
    Fodor É, Marchetti MC. 2018. Physica A 504:106–20
    [Google Scholar]
  4. 4. 
    Elgeti J, Winkler RG, Gompper G. 2015. Rep. Prog. Phys. 78:5056601
    [Google Scholar]
  5. 5. 
    Saw TB, Doostmohammadi A, Nier V, Kocgozlu L, Thampi S et al. 2017. Nature 544:212–16
    [Google Scholar]
  6. 6. 
    Cavagna A, Giardina I. 2014. Annu. Rev. Condens. Matter Phys. 5:183–207
    [Google Scholar]
  7. 7. 
    Bain N, Bartolo D. 2019. Science 363:642246–49
    [Google Scholar]
  8. 8. 
    Deseigne J, Dauchot O, Chaté H. 2010. Phys. Rev. Lett. 105:098001
    [Google Scholar]
  9. 9. 
    Palacci J, Sacanna S, Steinberg AP, Pine DJ, Chaikin PM. 2013. Science 339:6122936–40
    [Google Scholar]
  10. 10. 
    Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O. 1995. Phys. Rev. Lett. 75:1226–29
    [Google Scholar]
  11. 11. 
    Fily Y, Marchetti MC. 2012. Phys. Rev. Lett. 108:235702
    [Google Scholar]
  12. 12. 
    Toner J, Tu Y. 1995. Phys. Rev. Lett. 75:4326–29
    [Google Scholar]
  13. 13. 
    Wittkowski R, Tiribocchi A, Stenhammar J, Allen RJ, Marenduzzo D, Cates ME. 2014. Nat. Commun. 5:4351
    [Google Scholar]
  14. 14. 
    Chaté H. 2020. Annu. Rev. Condens. Matter Phys. 11:189–212
    [Google Scholar]
  15. 15. 
    Cates ME, Tailleur J. 2015. Annu. Rev. Condens. Matter Phys. 6:219–44
    [Google Scholar]
  16. 16. 
    Tailleur J, Cates ME. 2008. Phys. Rev. Lett. 100:218103
    [Google Scholar]
  17. 17. 
    Maggi C, Marconi UMB, Gnan N, Di Leonardo R. 2015. Sci. Rep. 5:10742
    [Google Scholar]
  18. 18. 
    Yang X, Manning ML, Marchetti MC. 2014. Soft Matter 10:6477–84
    [Google Scholar]
  19. 19. 
    Takatori SC, Yan W, Brady JF 2014. Phys. Rev. Lett. 113:028103
    [Google Scholar]
  20. 20. 
    Solon AP, Fily Y, Baskaran A, Cates ME, Kafri Y et al. 2015. Nat. Phys. 11:8673–78
    [Google Scholar]
  21. 21. 
    Bialké J, Siebert JT, Löwen H, Speck T. 2015. Phys. Rev. Lett. 115:098301
    [Google Scholar]
  22. 22. 
    Zakine R, Zhao Y, Knežević M, Daerr A, Kafri Y et al. 2020. Phys. Rev. Lett. 124:248003
    [Google Scholar]
  23. 23. 
    Paliwal S, Rodenburg J, van Roij R, Dijkstra M. 2018. New J. Phys. 20:015003
    [Google Scholar]
  24. 24. 
    Guioth J, Bertin E. 2019. J. Chem. Phys. 150:094108
    [Google Scholar]
  25. 25. 
    Onsager L. 1931. Phys. Rev. 37:405–26
    [Google Scholar]
  26. 26. 
    Kubo R. 1966. Rep. Prog. Phys. 29:1255–84
    [Google Scholar]
  27. 27. 
    Sekimoto K. 1998. Prog. Theor. Phys. Suppl. 130:17–27
    [Google Scholar]
  28. 28. 
    Seifert U. 2012. Rep. Prog. Phys. 75:12126001
    [Google Scholar]
  29. 29. 
    Maes C. 1999. J. Stat. Phys. 95:1367–92
    [Google Scholar]
  30. 30. 
    Derrida B. 2007. J. Stat. Mech. 2007:07P07023
    [Google Scholar]
  31. 31. 
    Lecomte V, Appert-Rolland C, van Wijland F. 2007. J. Stat. Phys. 127:151–106
    [Google Scholar]
  32. 32. 
    Garrahan JP, Jack RL, Lecomte V, Pitard E, van Duijvendijk K, van Wijland F. 2007. Phys. Rev. Lett. 98:195702
    [Google Scholar]
  33. 33. 
    Touchette H. 2009. Phys. Rep. 478:11–69
    [Google Scholar]
  34. 34. 
    Jack RL. 2020. Eur. Phys. J. B 93:74
    [Google Scholar]
  35. 35. 
    Fodor É, Nardini C, Cates ME, Tailleur J, Visco P et al. 2016. Phys. Rev. Lett. 117:038103
    [Google Scholar]
  36. 36. 
    Dean DS. 1996. J. Phys. A Math. Gen. 29:24L613
    [Google Scholar]
  37. 37. 
    Tjhung E, Nardini C, Cates ME. 2018. Phys. Rev. X 8:031080
    [Google Scholar]
  38. 38. 
    Tiribocchi A, Wittkowski R, Marenduzzo D, Cates ME. 2015. Phys. Rev. Lett. 115:188302
    [Google Scholar]
  39. 39. 
    Nardini C, Fodor É, Tjhung E, van Wijland F, Tailleur J et al. 2017. Phys. Rev. X 7:021007 https://doi.org/10.1103/PhysRevX.7.021007
    [Crossref] [Google Scholar]
  40. 40. 
    Lebowitz JL, Spohn H. 1999. J. Stat. Phys. 95:1333–65
    [Google Scholar]
  41. 41. 
    Mandal D, Klymko K, DeWeese MR. 2017. Phys. Rev. Lett. 119:258001
    [Google Scholar]
  42. 42. 
    Puglisi A, Marconi UMB. 2017. Entropy 19:7356
    [Google Scholar]
  43. 43. 
    Speck T. 2018. Europhys. Lett. 123:220007
    [Google Scholar]
  44. 44. 
    Caprini L, Marconi UMB, Puglisi A, Vulpiani A. 2018. Phys. Rev. Lett. 121:139801
    [Google Scholar]
  45. 45. 
    Shankar S, Marchetti MC. 2018. Phys. Rev. E 98:020604
    [Google Scholar]
  46. 46. 
    Pietzonka P, Seifert U. 2018. J. Phys. A Math. Theor. 51:101LT01
    [Google Scholar]
  47. 47. 
    Dadhichi LP, Maitra A, Ramaswamy S. 2018. J. Stat. Mech. 2018:12123201
    [Google Scholar]
  48. 48. 
    Dabelow L, Bo S, Eichhorn R 2019. Phys. Rev. X 9:021009
    [Google Scholar]
  49. 49. 
    Borthne ØL, Fodor É, Cates ME. 2020. New J. Phys. 22:12123012
    [Google Scholar]
  50. 50. 
    Onsager L, Machlup S. 1953. Phys. Rev. 91:1505–12
    [Google Scholar]
  51. 51. 
    Caprini L, Marconi UMB, Puglisi A, Vulpiani A. 2019. J. Stat. Mech. 2019:5053203
    [Google Scholar]
  52. 52. 
    Martin D, de Pirey TA. 2021. J. Stat. Mech. 2021:4043205
    [Google Scholar]
  53. 53. 
    Crosato E, Prokopenko M, Spinney RE. 2019. Phys. Rev. E 100:042613
    [Google Scholar]
  54. 54. 
    Speck T. 2016. Europhys. Lett. 114:330006
    [Google Scholar]
  55. 55. 
    Solon AP, Tailleur J. 2013. Phys. Rev. Lett. 111:078101
    [Google Scholar]
  56. 56. 
    Alert R, Joanny JF, Casademunt J. 2020. Nat. Phys. 16:6682–88
    [Google Scholar]
  57. 57. 
    Markovich T, Fodor É, Tjhung E, Cates ME. 2021. Phys. Rev. X 11:021057
    [Google Scholar]
  58. 58. 
    Pietzonka P, Fodor É, Lohrmann C, Cates ME, Seifert U. 2019. Phys. Rev. X 9:041032
    [Google Scholar]
  59. 59. 
    Ekeh T, Cates ME, Fodor É. 2020. Phys. Rev. E 102:010101
    [Google Scholar]
  60. 60. 
    Zakine R, Solon A, Gingrich T, van Wijland F. 2017. Entropy 19:5193
    [Google Scholar]
  61. 61. 
    Holubec V, Steffenoni S, Falasco G, Kroy K. 2020. Phys. Rev. Res. 2:043262
    [Google Scholar]
  62. 62. 
    Fodor É, Cates ME. 2021. Europhys. Lett. 134:110003
    [Google Scholar]
  63. 63. 
    Loos SAM, Klapp SHL. 2020. New J. Phys. 22:12123051
    [Google Scholar]
  64. 64. 
    Gaspard P, Kapral R. 2018. J. Chem. Phys. 148:13134104
    [Google Scholar]
  65. 65. 
    Weber CA, Zwicker D, Jülicher F, Lee CF 2019. Rep. Prog. Phys. 82:6064601
    [Google Scholar]
  66. 66. 
    Groot SRD, Mazur P. 1962. Non-Equilibrium Thermodynamics Amsterdam: North-Holland
    [Google Scholar]
  67. 67. 
    Kruse K, Joanny JF, Jülicher F, Prost J, Sekimoto K. 2004. Phys. Rev. Lett. 92:078101
    [Google Scholar]
  68. 68. 
    Prost J, Jülicher F, Joanny JF. 2015. Nat. Phys. 11:111–17
    [Google Scholar]
  69. 69. 
    Martin D, O'Byrne J, Cates ME, Fodor É, Nardini C et al. 2021. Phys. Rev. E 103:032607 https://doi.org/10.1103/PhysRevE.103.032607
    [Crossref] [Google Scholar]
  70. 70. 
    Fodor É, Guo M, Gov NS, Visco P, Weitz DA, van Wijland F. 2015. Europhys. Lett. 110:448005
    [Google Scholar]
  71. 71. 
    Ahmed WW, Fodor É, Almonacid M, Bussonnier M, Verlhac M-H et al. 2018. Biophys. J. 114:71667–79
    [Google Scholar]
  72. 72. 
    Gnesotto FS, Mura F, Gladrow J, Broedersz CP. 2018. Rep. Prog. Phys. 81:6066601
    [Google Scholar]
  73. 73. 
    Harada T, Sasa Si. 2005. Phys. Rev. Lett. 95:130602
    [Google Scholar]
  74. 74. 
    Szamel G. 2019. Phys. Rev. E 100:050603
    [Google Scholar]
  75. 75. 
    Toyabe S, Okamoto T, Watanabe-Nakayama T, Taketani H, Kudo S, Muneyuki E. 2010. Phys. Rev. Lett. 104:198103
    [Google Scholar]
  76. 76. 
    Fodor É, Ahmed WW, Almonacid M, Bussonnier M, Gov NS et al. 2016. Europhys. Lett. 116:30008
    [Google Scholar]
  77. 77. 
    Seara DS, Machta BB, Murrell MP. 2021. Nat. Commun. 12:392
    [Google Scholar]
  78. 78. 
    Flenner E, Szamel G. 2020. Phys. Rev. E 102:022607
    [Google Scholar]
  79. 79. 
    Dabelow L, Bo S, Eichhorn R. 2021. J. Stat. Mech. 2021:3033216
    [Google Scholar]
  80. 80. 
    Fodor É, Nemoto T, Vaikuntanathan S. 2020. New J. Phys. 22:013052
    [Google Scholar]
  81. 81. 
    Tociu L, Fodor É, Nemoto T, Vaikuntanathan S. 2019. Phys. Rev. X 9:041026
    [Google Scholar]
  82. 82. 
    Hansen JP, McDonald IR. 2013. Theory of Simple Liquids Oxford: Academic
    [Google Scholar]
  83. 83. 
    Tociu L, Rassolov G, Fodor É, Vaikuntanathan S. 2020. arXiv:2012.10441
  84. 84. 
    Li YI, Cates ME. 2021. J. Stat. Mech. 2021:1013211
    [Google Scholar]
  85. 85. 
    Caballero F, Cates ME. 2020. Phys. Rev. Lett. 124:240604
    [Google Scholar]
  86. 86. 
    Garrahan JP, Jack RL, Lecomte V, Pitard E, van Duijvendijk K, van Wijland F. 2009. J. Phys. A 42:7075007
    [Google Scholar]
  87. 87. 
    Bodineau T, Derrida B. 2004. Phys. Rev. Lett. 92:18180601
    [Google Scholar]
  88. 88. 
    Appert-Rolland C, Derrida B, Lecomte V, van Wijland F. 2008. Phys. Rev. E 78:2021122
    [Google Scholar]
  89. 89. 
    Jack RL, Sollich P. 2015. Eur. Phys. J. Spec. Top. 224:122351–67
    [Google Scholar]
  90. 90. 
    Dolezal J, Jack RL. 2019. J. Stat. Mech. 2019:12123208
    [Google Scholar]
  91. 91. 
    Hedges LO, Jack RL, Garrahan JP, Chandler D. 2009. Science 323:59191309–13
    [Google Scholar]
  92. 92. 
    Garrahan JP, Lesanovsky I. 2010. Phys. Rev. Lett. 104:16160601
    [Google Scholar]
  93. 93. 
    Weber JK, Jack RL, Schwantes CR, Pande VS. 2014. Biophys. J. 107:4974–82
    [Google Scholar]
  94. 94. 
    Nemoto T, Fodor É, Cates ME, Jack RL, Tailleur J. 2019. Phys. Rev. E 99:022605 https://doi.org/10.1103/PhysRevE.99.022605
    [Crossref] [Google Scholar]
  95. 95. 
    Simha A, Evans RML, Baule A. 2008. Phys. Rev. E 77:3031117
    [Google Scholar]
  96. 96. 
    Pressé S, Ghosh K, Lee J, Dill KA. 2013. Rev. Mod. Phys. 85:31115–41
    [Google Scholar]
  97. 97. 
    den Hollander F. 2000. Large Deviations Providence, RI: Am. Math. Soc.
    [Google Scholar]
  98. 98. 
    Bertsekas DP. 2005. Dynamic Programming and Optimal Control 1: Belmont, MA: Athena Sci.
    [Google Scholar]
  99. 99. 
    Dupuis P, Ellis RS. 1997. A Weak Convergence Approach to the Theory of Large Deviations New York: Wiley
    [Google Scholar]
  100. 100. 
    Chétrite R, Touchette H. 2015. J. Stat. Mech. 2015:12P12001
    [Google Scholar]
  101. 101. 
    Chetrite R, Touchette H. 2015. Ann. Henri Poincaré 16:92005–57
    [Google Scholar]
  102. 102. 
    Jack RL, Sollich P. 2010. Prog. Theor. Phys. Suppl. 184:304–17
    [Google Scholar]
  103. 103. 
    Tsobgni Nyawo P, Touchette H 2016. Phys. Rev. E 94:032101
    [Google Scholar]
  104. 104. 
    Cagnetta F, Mallmin E. 2020. Phys. Rev. E 101:022130
    [Google Scholar]
  105. 105. 
    Keta YE, Fodor É, van Wijland F, Cates ME, Jack RL. 2021. Phys. Rev. E 103:022603 https://doi.org/10.1103/PhysRevE.103.022603
    [Crossref] [Google Scholar]
  106. 106. 
    Nemoto T, Bouchet F, Jack RL, Lecomte V. 2016. Phys. Rev. E 93:6062123
    [Google Scholar]
  107. 107. 
    Nemoto T, Jack RL, Lecomte V. 2017. Phys. Rev. Lett. 118:11115702
    [Google Scholar]
  108. 108. 
    Ray U, Chan GKL, Limmer DT. 2018. Phys. Rev. Lett. 120:210602
    [Google Scholar]
  109. 109. 
    Jacobson D, Whitelam S. 2019. Phys. Rev. E 100:052139
    [Google Scholar]
  110. 110. 
    Bertini L, De Sole A, Gabrielli D, Jona-Lasinio G, Landim C 2015. Rev. Mod. Phys. 87:2593–636
    [Google Scholar]
  111. 111. 
    Whitelam S, Klymko K, Mandal D. 2018. J. Chem. Phys. 148:15154902
    [Google Scholar]
  112. 112. 
    GrandPre T, Klymko K, Mandadapu KK, Limmer DT. 2021. Phys. Rev. E 103:012613
    [Google Scholar]
  113. 113. 
    Cagnetta F, Corberi F, Gonnella G, Suma A. 2017. Phys. Rev. Lett. 119:158002
    [Google Scholar]
  114. 114. 
    GrandPre T, Limmer DT. 2018. Phys. Rev. E 98:060601
    [Google Scholar]
  115. 115. 
    Chiarantoni P, Cagnetta F, Corberi F, Gonnella G, Suma A. 2020. J. Phys. A Math. Theor. 53:3636LT02
    [Google Scholar]
  116. 116. 
    Dolezal J, Jack RL. 2021. Phys. Rev. E 103:052132
    [Google Scholar]
  117. 117. 
    Horowitz JM, Gingrich TR. 2020. Nat. Phys. 16:115–20
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031720-032419
Loading
/content/journals/10.1146/annurev-conmatphys-031720-032419
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error