1932

Abstract

Living cells are spatially organized by compartments that can nucleate, grow, and dissolve. Compartmentalization can emerge by phase separation, leading to the formation of droplets in the cell's nucleo- or cytoplasm, also called biomolecular condensates. Such droplets can organize the biochemistry of the cell by providing specific chemical environments in space and time. These compartments provide transient environments, suggesting the relevance of nonequilibrium physics of droplets as a key to unraveling the underlying physicochemical principles of biological functions in living cells. In this review, we highlight coarse-grained approaches that capture the physics of chemically active emulsions as a model for condensates orchestrating chemical processes. We also discuss the dynamics of single molecules in condensates and the material properties of biological condensates and their relevance for the cell. Finally, we propose wetting, prewetting, and surface phase transitions as a possibility for intracellular surfaces to control biological condensates, spatially organize membranes, and exert mechanical forces.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031720-032917
2024-03-11
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/15/1/annurev-conmatphys-031720-032917.html?itemId=/content/journals/10.1146/annurev-conmatphys-031720-032917&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alberts B, Bray D, Hopkin K, Johnson AD, Lewis J et al. 2015. Essential Cell Biology New York: Tayor & Francis Group
  2. 2.
    Hyman AA, Weber CA, Jülicher F. 2014. Annu. Rev. Cell Dev. Biol. 30:39–58
  3. 3.
    Brangwynne CP. 2013. J. Cell Biol. 203:6875–81
  4. 4.
    Zwicker D, Decker M, Jaensch S, Hyman AA, Jülicher F. 2014. PNAS 111:26E2636–45
  5. 5.
    Woodruff JB, Gomes BF, Widlund PO, Mahamid J, Honigmann A, Hyman AA. 2017. Cell 169:61066–77
  6. 6.
    Brangwynne CP, Mitchison TJ, Hyman AA. 2011. PNAS 108:114334–39
  7. 7.
    Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L et al. 2016. Cell 165:71686–97
  8. 8.
    Lafontaine DL, Riback JA, Bascetin R, Brangwynne CP. 2021. Nat. Rev. Mol. Cell Biol. 22:3165–82
  9. 9.
    Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C et al. 2009. Science 324:59351729–32
  10. 10.
    Updike DL, Knutson AK, Egelhofer TA, Campbell AC, Strome S. 2014. Curr. Biol. 24:9970–75
  11. 11.
    Strome S, Wood WB. 1983. Cell 35:15–25
  12. 12.
    Lee CF, Brangwynne CP, Gharakhani J, Hyman AA, Jülicher F. 2013. Phys. Rev. Lett. 111:8088101
  13. 13.
    Weber CA, Lee CF, Jülicher F. 2017. New J. Phys. 19:5053021
  14. 14.
    Griffin EE, Odde DJ, Seydoux G. 2011. Cell 146:6955–68
  15. 15.
    Schubert CM, Lin R, De Vries CJ, Plasterk RH, Priess JR. 2000. Mol. Cell 5:4671–82
  16. 16.
    Banani SF, Lee HO, Hyman AA, Rosen MK. 2017. Nat. Rev. Mol. Cell Biol. 18:5285–98
  17. 17.
    Alberti S. 2017. Curr. Biol. 27:20R1097–102
  18. 18.
    Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M et al. 2018. Trends Cell Biol. 28:6420–35
  19. 19.
    McSwiggen DT, Hansen AS, Teves SS, Marie-Nelly H, Hao Y et al. 2019. eLife 8:e47098
  20. 20.
    Taylor NO, Wei MT, Stone HA, Brangwynne CP. 2019. Biophys. J. 117:71285–300
  21. 21.
    Hubatsch L, Jawerth LM, Love C, Bauermann J, Tang TD et al. 2021. eLife 10:e68620
  22. 22.
    Ghosh A, Kota D, Zhou HX. 2021. Nat. Commun. 12:5995
  23. 23.
    Weber CA, Zechner C. 2021. Phys. Today 74:638–43
  24. 24.
    Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA. 2017. Cell 169:13–23
  25. 25.
    Maharana S, Wang J, Papadopoulos DK, Richter D, Pozniakovsky A et al. 2018. Science 360:6391918–21
  26. 26.
    Franzmann TM, Alberti S. 2019. Cold Spring Harb. Perspect. Biol. 11:6a034058
  27. 27.
    Nakashima KK, Vibhute MA, Spruijt E. 2019. Front. Mol. Biosci. 6:21
  28. 28.
    Bauermann J, Laha S, McCall PM, Jülicher F, Weber CA. 2022. J. Am. Chem. Soc. 144:4219294–304
  29. 29.
    Spruijt E. 2023. Commun. Chem. 6:23
  30. 30.
    Lyon AS, Peeples WB, Rosen MK. 2021. Nat. Rev. Mol. Cell Biol. 22:3215–35
  31. 31.
    Klosin A, Oltsch F, Harmon T, Honigmann A, Jülicher F et al. 2020. Science 367:6476464–68
  32. 32.
    Roden C, Gladfelter AS. 2021. Nat. Rev. Mol. Cell Biol. 22:3183–95
  33. 33.
    Tibble RW, Depaix A, Kowalska J, Jemielity J, Gross JD. 2021. Nat. Chem. Biol. 17:5615–23
  34. 34.
    Wunder T, Mueller-Cajar O. 2020. Curr. Opin. Plant Biol. 58:1–7
  35. 35.
    Sagui C, Grant M. 1999. Phys. Rev. E 59:44175–87
  36. 36.
    Bray AJ. 2002. Adv. Phys. 51:2481–587
  37. 37.
    Weber CA, Zwicker D, Jülicher F, Lee CF. 2019. Rep. Prog. Phys. 82:6064601
  38. 38.
    Shimobayashi SF, Ronceray P, Sanders DW, Haataja MP, Brangwynne CP. 2021. Nature 599:7885503–6
  39. 39.
    Lomakin A, Asherie N, Benedek GB. 1996. J. Chem. Phys. 104:41646–56
  40. 40.
    Bartolucci G, Adame-Arana O, Zhao X, Weber CA. 2021. Biophys. J. 120:214682–97
  41. 41.
    Adame-Arana O, Weber CA, Zaburdaev V, Prost J, Jülicher F. 2020. Biophys. J. 119:81590–605
  42. 42.
    Overbeek JTG, Voorn M. 1957. J. Cell. Comp. Physiol. 49:S17–26
  43. 43.
    de Groot SR, Mazur P. 1984. Non-Equilibrium Thermodynamics New York: Dover Publ. Unabridged corrected republication ed.
  44. 44.
    Alberty RA. 2003. Thermodynamics of Biochemical Reactions Hoboken, NJ: Wiley-Intersci.
  45. 45.
    Glotzer SC, Di Marzio EA, Muthukumar M. 1995. Phys. Rev. Lett. 74:112034–37
  46. 46.
    Zwicker D, Hyman AA, Jülicher F. 2015. Phys. Rev. E 92:012317
  47. 47.
    Wurtz JD, Lee CF. 2018. Phys. Rev. Lett. 120:7078102
  48. 48.
    Zwicker D, Seyboldt R, Weber CA, Hyman AA, Jülicher F. 2017. Nat. Phys. 13:4408–13
  49. 49.
    Seyboldt R, Jülicher F. 2018. New J. Phys. 20:10105010
  50. 50.
    Bergmann AM, Bauermann J, Bartolucci G, Donau C, Stasi M et al. 2023. Nat. Commun. 14:6552
  51. 51.
    Bauermann J, Weber CA, Jülicher F. 2022. Ann. Phys. 534:92200132
  52. 52.
    Zwicker D. 2022. Curr. Opin. Colloid Interface Sci. 61:101606
  53. 53.
    Heltberg ML, Miné-Hattab J, Taddei A, Walczak AM, Mora T. 2021. eLife 10:e69181
  54. 54.
    Bajpai G, Amiad Pavlov D, Lorber D, Volk T, Safran S. 2021. eLife 10:e63976
  55. 55.
    Zhang Y, Lee DS, Meir Y, Brangwynne CP, Wingreen NS. 2021. Phys. Rev. Lett. 126:25258102
  56. 56.
    Adame-Arana O, Bajpai G, Safran S. 2021. Biophys. J. 120:3318a–319a
  57. 57.
    Wei MT, Chang YC, Shimobayashi SF, Shin Y, Strom AR, Brangwynne CP. 2020. Nat. Cell Biol. 22:101187–96
  58. 58.
    Deviri D, Safran SA. 2021. PNAS 118:25e2100099118
  59. 59.
    Terlecki-Zaniewicz S, Humer T, Eder T, Schmoellerl J, Heyes E et al. 2021. Nat. Struct. Mol. Biol. 28:2190–201
  60. 60.
    Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH. 2017. Nature 547:7662241–45
  61. 61.
    Michieletto D, Colì D, Marenduzzo D, Orlandini E. 2019. Phys. Rev. Lett. 123:22228101
  62. 62.
    Lohse DJ, Hadjichristidis N. 1997. Curr. Opin. Colloid Interface Sci. 2:2171–76
  63. 63.
    Clark A, Kavanagh G, Ross-Murphy S 2001. Food Hydrocolloids 15:4–6383–400
  64. 64.
    Gil T, Sabra MC, Ipsen JH, Mouritsen OG. 1997. Biophys. J. 73:41728–41
  65. 65.
    Zhao X, Bartolucci G, Honigmann A, Jülicher F, Weber CA. 2021. New J. Phys. 23:12123003
  66. 66.
    Rouches M, Veatch SL, Machta BB. 2021. PNAS 118:40e2103401118
  67. 67.
    Beutel O, Maraspini R, Pombo-García K, Martin-Lemaitre C, Honigmann A. 2019. Cell 179:4923–936
  68. 68.
    Morin JA, Wittmann S, Choubey S, Klosin A, Golfier S et al. 2022. Nat. Phys. 18:3271–76
  69. 69.
    Renger R, Morin JA, Lemaitre R, Ruer-Gruss M, Jülicher F et al. 2022. PNAS 119:10e2107871119
  70. 70.
    Quail T, Golfier S, Elsner M, Ishihara K, Murugesan V et al. 2021. Nat. Phys. 17:91007–12
  71. 71.
    Flory PJ. 1942. J. Chem. Phys. 10:51–61
  72. 72.
    Huggins ML. 1942. J. Phys. Chem. 46:151–58
  73. 73.
    Fritsch AW, Diaz-Delgadillo AF, Adame-Arana O, Hoege C, Mittasch M et al. 2021. PNAS 118:37e2102772118
  74. 74.
    Doi M, Edwards SF. 1988. The Theory of Polymer Dynamics Oxford, UK: Clarendon
  75. 75.
    Rubinstein M, Colby RH 2003. Polymer Physics 23 New York: Oxford Univ. Press
  76. 76.
    Safran S. 2018. Statistical Thermodynamics of Surfaces, Interfaces, and Membranes Boca Raton, FL: CRC
  77. 77.
    Lin YH, Forman-Kay JD, Chan HS. 2016. Phys. Rev. Lett. 117:17178101
  78. 78.
    Lin YH, Song J, Forman-Kay JD, Chan HS. 2017. J. Mol. Liquids 228:176–93
  79. 79.
    McCall PM, Kim K, Fritsch AW, Iglesias-Artola J, Jawerth L et al. 2020. bioRxiv:2020.10.25.352823
  80. 80.
    Saha S, Weber CA, Nousch M, Adame-Arana O, Hoege C et al. 2016. Cell 166:61572–84
  81. 81.
    Pessina F, Giavazzi F, Yin Y, Gioia U, Vitelli V et al. 2019. Nat. Cell Biol. 21:101286–99
  82. 82.
    Milo R, Phillips R. 2015. Cell Biology by the Numbers New York: Garland Sci
  83. 83.
    Mabillard J, Weber CA, Jülicher F. 2023. Phys. Rev. E 107:014118
  84. 84.
    Mittasch M, Gross P, Nestler M, Fritsch AW, Iserman C et al. 2018. Nat. Cell Biol. 20:3344–51
  85. 85.
    Jülicher F, Prost J. 2009. Eur. Phys. J. E 29:27–36
  86. 86.
    Wagner C. 1961. Z. Elektrochem. Ber. Bunsenges. Phys. Chem. 65:7–8581–91
  87. 87.
    Lifschitz I, Slyozov V. 1961. J. Phys. Chem. Solids 19: 1/2:35–50
  88. 88.
    Tjhung E, Nardini C, Cates ME. 2018. Phys. Rev. X 8:3031080
  89. 89.
    Cates ME, Tjhung E. 2018. J. Fluid Mech. 836:P1
  90. 90.
    Grosberg AY, Joanny JF. 2015. Phys. Rev. E 92:3032118
  91. 91.
    Ilker E, Joanny JF. 2020. Phys. Rev. Res. 2:2023200
  92. 92.
    Landau LD, Lifshitz EM. 2013. Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics 6 New York: Elsevier
  93. 93.
    Arana OA. 2019. Chemical control of liquid phase separation in the cell PhD Thesis Tech. Univ. Dresden Dresden, Germ.:
  94. 94.
    Anderson JL. 1989. Annu. Rev. Fluid Mech. 21:61–99
  95. 95.
    Krüger S, Weber CA, Sommer JU, Jülicher F. 2018. New J. Phys. 20:7075009
  96. 96.
    Weber C, Michaels T, Mahadevan L. 2019. eLife 8:e42315
  97. 97.
    Bo S, Hubatsch L, Bauermann J, Weber CA, Jülicher F. 2021. Phys. Rev. Res. 3:4043150
  98. 98.
    Jawerth LM, Ijavi M, Ruer M, Saha S, Jahnel M et al. 2018. Phys. Rev. Lett. 121:25258101
  99. 99.
    Jawerth L, Fischer-Friedrich E, Saha S, Wang J, Franzmann T et al. 2020. Science 370:65221317–23
  100. 100.
    Alberti S, Hyman AA. 2021. Nat. Rev. Mol. Cell Biol. 22:3196–213
  101. 101.
    Boke E, Mitchison TJ. 2017. Cell Cycle 16:2153–54
  102. 102.
    Woodruff JB, Hyman AA, Boke E. 2018. Trends Biochem. Sci. 43:281–94
  103. 103.
    Marrone L, Drexler HC, Wang J, Tripathi P, Distler T et al. 2019. Acta Neuropathol. 138:67–84
  104. 104.
    Cahn JW. 1977. J. Chem. Phys. 66:83667–72
  105. 105.
    Gennes PG, Brochard-Wyart F, Quéré D et al. 2004. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves New York: Springer
  106. 106.
    De Gennes PG. 1985. Rev. Mod. Phys. 57:3827–63
  107. 107.
    Nakanishi H, Fisher ME. 1982. Phys. Rev. Lett. 49:211565–68
  108. 108.
    Pandit R, Fisher ME. 1983. Phys. Rev. Lett. 51:191772–75
  109. 109.
    Schmidt JW, Moldover MR. 1983. J. Chem. Phys. 79:379–87
  110. 110.
    Kellay H, Bonn D, Meunier J. 1993. Phys. Rev. Lett. 71:2607–10
  111. 111.
    Kusumaatmaja H, May AI, Knorr RL. 2021. J. Cell Biol. 220:10e202103175
  112. 112.
    Aumeier C. 2022. Biophys. J. 121:33a
  113. 113.
    Rao M, Mayor S. 2014. Curr. Opin. Cell Biol. 29:126–32
  114. 114.
    Cebecauer M, Amaro M, Jurkiewicz P, Sarmento MJ, Sachl R et al. 2018. Chem. Rev. 118:2311259–97
  115. 115.
    Lipowsky R. 2023. Membranes 13:2223
  116. 116.
    Lu T, Liese S, Schoenmakers L, Weber CA, Suzuki H et al. 2022. J. Am. Chem. Soc. 144:3013451–55
  117. 117.
    Agudo-Canalejo J, Schultz SW, Chino H, Migliano SM, Saito C et al. 2021. Nature 591:7848142–46
  118. 118.
    Hernández-Vega A, Braun M, Scharrel L, Jahnel M, Wegmann S et al. 2017. Cell Rep. 20:102304–12
  119. 119.
    Setru SU, Gouveia B, Alfaro-Aco R, Shaevitz JW, Stone HA, Petry S. 2021. Nat. Phys. 17:4493–98
  120. 120.
    Quéré D, Di Meglio JM, Brochard-Wyart F. 1990. Science 249:49741256–60
  121. 121.
    Wegmann S, Eftekharzadeh B, Tepper K, Zoltowska KM, Bennett RE et al. 2018. EMBO J. 37:7e98049
  122. 122.
    Ukmar-Godec T, Wegmann S, Zweckstetter M. 2020. Semin. Cell Dev. Biol. 99:202–14
  123. 123.
    Kim Y, Shi Z, Zhang H, Finkelstein IJ, Yu H. 2019. Science 366:64711345–49
  124. 124.
    Golfier S, Quail T, Kimura H, Brugués J. 2020. eLife 9:e53885
  125. 125.
    Deleted in proof
  126. 126.
    Sear RP, Cuesta JA. 2003. Phys. Rev. Lett. 91:24245701
  127. 127.
    Jacobs WM, Frenkel D. 2017. Biophys. J. 112:4683–91
  128. 128.
    Shrinivas K, Brenner MP. 2021. PNAS 118:45e2108551118
  129. 129.
    Jacobs WM, Frenkel D. 2013. J. Chem. Phys. 139:2024108
  130. 130.
    Zwicker D, Laan L. 2022. PNAS 119:28e2201250119
  131. 131.
    Ong SE, Mann M. 2005. Nat. Chem. Biol. 1:5252–62
  132. 132.
    Semenov AN, Rubinstein M. 1998. Macromolecules 31:41373–85
  133. 133.
    Choi JM, Dar F, Pappu RV. 2019. PLOS Comput. Biol. 15:10e1007028
  134. 134.
    Choi JM, Holehouse AS, Pappu RV. 2020. Annu. Rev. Biophys. 49:107–33
  135. 135.
    Bremer A, Farag M, Borcherds WM, Peran I, Martin EW et al. 2022. Nat. Chem. 14:2196–207
  136. 136.
    Guillén-Boixet J, Kopach A, Holehouse AS, Wittmann S, Jahnel M et al. 2020. Cell 181:2346–61
  137. 137.
    Kar M, Dar F, Welsh TJ, Vogel LT, Kühnemuth R et al. 2022. PNAS 119:28e2202222119
  138. 138.
    Patel A, Malinovska L, Saha S, Wang J, Alberti S et al. 2017. Science 356:6339753–56
  139. 139.
    Blankschtein D, Thurston GM, Benedek GB. 1985. Phys. Rev. Lett. 54:9955
  140. 140.
    Tanaka F. 2011. Polymer Physics: Applications to Molecular Association and Thermoreversible Gelation Cambridge, UK: Cambridge Univ. Press, 1st ed.
  141. 141.
    Deviri D, Safran SA. 2020. Soft Matter 16:235458–69
  142. 142.
    Bartolucci G, Haugerud IS, Michaels TCT, Weber CA. 2023. bioRxiv:2023.04.18.537072. https://www.biorxiv.org/content/10.1101/2023.04.18.537072v3
  143. 143.
    Dimura M, Peulen TO, Hanke CA, Prakash A, Gohlke H, Seidel CA. 2016. Curr. Opin. Struct. Biol. 40:163–85
  144. 144.
    Michaels TC, Mahadevan L, Weber CA. 2022. Phys. Rev. Res. 4:4043173
  145. 145.
    Pönisch W, Michaels TC, Weber CA. 2023. Biophys. J. 122:197–214
  146. 146.
    Welsh TJ, Krainer G, Espinosa JR, Joseph JA, Sridhar A et al. 2022. Nano Lett. 22:2612–21
  147. 147.
    Scott E, Tung L, Drickamer H. 1951. J. Chem. Phys. 19:91075–78
  148. 148.
    Auer P, Murbach E. 1954. J. Chem. Phys. 22:61054–59
  149. 149.
    Zhang Y, Pyo AGT, Jiang Y, Brangwynne CP, Stone HA, Wingreen NS. 2022. bioRxiv:2022.03.16.484641
  150. 150.
    Wanger C. 1961. Z. Elektrochem. 65:581–91
  151. 151.
    Folkmann AW, Putnam A, Lee CF, Seydoux G. 2021. Science 373:65601218–24
  152. 152.
    Cochard A, Navarro MGJ, Piroska L, Kashida S, Kress M et al. 2022. Biophys. J. 121:91675–90
  153. 153.
    Goldberg GS, Valiunas V, Brink PR. 2004. Biochim. Biophys. Acta (BBA)-Biomembranes 1662:1–296–101
  154. 154.
    Krug SM, Schulzke JD, Fromm M. 2014. Semin. Cell Dev. Biol. 36:166–76
/content/journals/10.1146/annurev-conmatphys-031720-032917
Loading
/content/journals/10.1146/annurev-conmatphys-031720-032917
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error