1932

Abstract

This article summarizes some of the relevant features exhibited by binary mixtures of Bose–Einstein condensates in the presence of coherent coupling at zero temperature. The coupling, which is experimentally produced by proper photon transitions, can involve either negligible momentum transfer from the electromagnetic radiation (Rabi coupling) or large momentum transfer (Raman coupling) associated with spin–orbit effects. The nature of the quantum phases exhibited by coherently coupled mixtures is discussed in detail, including their paramagnetic, ferromagnetic, and, in the case of spin–orbit coupling, supersolid phases. The behavior of the corresponding elementary excitations is discussed, with explicit emphasis on the novel features caused by the spin-like degree of freedom. Focus is further given to the topological excitations (solitons, vortices) as well as to the superfluid properties. This review also points out relevant open questions that deserve more systematic theoretical and experimental investigations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031820-121316
2022-03-10
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/13/1/annurev-conmatphys-031820-121316.html?itemId=/content/journals/10.1146/annurev-conmatphys-031820-121316&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Anderson MH, Ensher JR, Matthews MR, Wieman CE, Cornell EA 1995. Science 269:5221198–201
    [Google Scholar]
  2. 2. 
    Davis KB, Mewes MO, Andrews MR, van Druten NJ, Durfee DS et al. 1995. Phys. Rev. Lett. 75:223969–73
    [Google Scholar]
  3. 3. 
    Myatt CJ, Burt EA, Ghrist RW, Cornell EA, Wieman CE 1997. Phys. Rev. Lett. 78:4586–89
    [Google Scholar]
  4. 4. 
    Edwards DO, Brewer DF, Seligman P, Skertic M, Yaqub M 1965. Phys. Rev. Lett. 15:20773–75
    [Google Scholar]
  5. 5. 
    Baym G, Pethick C. 1978. The Physics of Liquid and Solid Helium, Part II KH Bennemann, JB Ketterson 1–122 New York: John Wiley & Sons
    [Google Scholar]
  6. 6. 
    Bychkov YA, Rashba EI 1984. J. Phys. C: Solid State Phys. 17:336039–45
    [Google Scholar]
  7. 7. 
    Dresselhaus G 1955. Phys. Rev. 100:2580–86
    [Google Scholar]
  8. 8. 
    Lavoine L, Hammond A, Recati A, Petrov D, Bourdel T. 2021. Phys. Rev. Lett. 127:20203402
    [Google Scholar]
  9. 9. 
    Petrov DS 2015. Phys. Rev. Lett. 115:15155302
    [Google Scholar]
  10. 10. 
    Cappellaro A, Macrì T, Bertacco GF, Salasnich L 2017. Sci. Rep. 7:113358
    [Google Scholar]
  11. 11. 
    Sachdeva R, Tengstrand MN, Reimann SM 2020. Phys. Rev. A 102:4043304
    [Google Scholar]
  12. 12. 
    Sánchez-Baena J, Boronat J, Mazzanti F 2020. Phys. Rev. A 102:5053308
    [Google Scholar]
  13. 13. 
    Barbiero L, Abad M, Recati A 2016. Phys. Rev. A 93:3033645
    [Google Scholar]
  14. 14. 
    Bornheimer U, Vasić I, Hofstetter W 2017. Phys. Rev. A 96:6063623
    [Google Scholar]
  15. 15. 
    Zhang S, Cole WS, Paramekanti A, Trivedi N 2015. Annu. Rev. Cold Atoms Mol. 3:135–79
    [Google Scholar]
  16. 16. 
    Hamner C, Zhang Y, Khamehchi MA, Davis MJ, Engels P 2015. Phys. Rev. Lett. 114:7070401
    [Google Scholar]
  17. 17. 
    Kartashov YV, Konotop VV, Zezyulin DA, Torner L 2016. Phys. Rev. Lett. 117:21215301
    [Google Scholar]
  18. 18. 
    Yamamoto D, Spielman IB, Sá de Melo CAR 2017. Phys. Rev. A 96:6061603
    [Google Scholar]
  19. 19. 
    Cornell EA, Hall DS, Matthews MR, Wieman CE 1998. J. Low Temp. Phys. 113:3151–65
    [Google Scholar]
  20. 20. 
    Abad M, Recati A 2013. Eur. Phys. J. D 67:148
    [Google Scholar]
  21. 21. 
    Goldstein EV, Meystre P 1997. Phys. Rev. A 55:42935–40
    [Google Scholar]
  22. 22. 
    Blakie PB, Ballagh RJ, Gardiner CW 1999. J. Opt. B: Quantum Semiclassical Opt. 1:4378–82
    [Google Scholar]
  23. 23. 
    Matthews MR, Anderson BP, Haljan PC, Hall DS, Holland MJ et al. 1999. Phys. Rev. Lett. 83:173358–61
    [Google Scholar]
  24. 24. 
    Williams J, Walser R, Cooper J, Cornell EA, Holland M 2000. Phys. Rev. A 61:3033612
    [Google Scholar]
  25. 25. 
    Sachdev S 1999. Quantum Phase Transitions Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  26. 26. 
    Zibold T, Nicklas E, Gross C, Oberthaler MK 2010. Phys. Rev. Lett. 105:20204101 https://doi.org/10.1103/PhysRevLett.105.204101
    [Crossref] [Google Scholar]
  27. 27. 
    Nicklas E, Karl M, Höfer M, Johnson A, Muessel W et al. 2015. Phys. Rev. Lett. 115:24245301
    [Google Scholar]
  28. 28. 
    Pitaevskii LP, Stringari S 2003. Bose–Einstein Condensation Oxford, UK: Oxford Sci. Publ.
    [Google Scholar]
  29. 29. 
    Tommasini P, de Passos EJV, de Toledo Piza AFR, Hussein MS, Timmermans E 2003. Phys. Rev. A 67:023606
    [Google Scholar]
  30. 30. 
    Pethick CJ, Smith H 2002. Bose–Einstein Condensation in Dilute Gases Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  31. 31. 
    Recati A, Piazza F 2019. Phys. Rev. B 99:6064505
    [Google Scholar]
  32. 32. 
    Mermin ND, Ho TL 1976. Phys. Rev. Lett. 36:11594–97
    [Google Scholar]
  33. 33. 
    Nikuni T, Williams JE 2003. J. Low Temp. Phys. 133:5323–75
    [Google Scholar]
  34. 34. 
    Bar'yakhtar VG, Ivanov BA 2015. Low Temp. Phys. 41:9663–69
    [Google Scholar]
  35. 35. 
    Smerzi A, Fantoni S, Giovanazzi S, Shenoy SR 1997. Phys. Rev. Lett. 79:254950–53
    [Google Scholar]
  36. 36. 
    Raghavan S, Smerzi A, Fantoni S, Shenoy S 1999. Phys. Rev. A 59:1620–33
    [Google Scholar]
  37. 37. 
    Albiez M, Gati R, Fölling J, Hunsmann S, Cristiani M, Oberthaler M 2005. Phys. Rev. Lett. 95:1010402
    [Google Scholar]
  38. 38. 
    Schumm T, Hofferberth S, Andersson LM, Wildermuth S, Groth S et al. 2005. Nat. Phys. 1:157–62
    [Google Scholar]
  39. 39. 
    Levy S, Lahoud E, Shomroni I, Steinhauer J 2007. Nature 449:7162579–83
    [Google Scholar]
  40. 40. 
    Trenkwalder A, Spagnolli G, Semeghini G, Coop S, Landini M et al. 2016. Nat. Phys. 12:9826–29
    [Google Scholar]
  41. 41. 
    Spagnolli G, Semeghini G, Masi L, Ferioli G, Trenkwalder A et al. 2017. Phys. Rev. Lett. 118:23230403
    [Google Scholar]
  42. 42. 
    Nicklas E, Strobel H, Zibold T, Gross C, Malomed BA et al. 2011. Phys. Rev. Lett. 107:19193001
    [Google Scholar]
  43. 43. 
    Cross MC, Hohenberg PC 1993. Rev. Mod. Phys. 65:3851–1112
    [Google Scholar]
  44. 44. 
    Matuszewski M 2010. Phys. Rev. Lett. 105:2020405
    [Google Scholar]
  45. 45. 
    Kronjäger J, Becker C, Soltan-Panahi P, Bongs K, Sengstock K 2010. Phys. Rev. Lett. 105:9090402
    [Google Scholar]
  46. 46. 
    Bernier NR, Dalla Torre EG, Demler E 2014. Phys. Rev. Lett. 113:6065303
    [Google Scholar]
  47. 47. 
    Farolfi A, Zenesini A, Trypogeorgos D, Mordini C, Gallemì A et al. 2021. Nat. Phys. 17:135963
    [Google Scholar]
  48. 48. 
    Son DT, Stephanov MA 2002. Phys. Rev. A 65:6063621
    [Google Scholar]
  49. 49. 
    Tanaka Y 2001. Phys. Rev. Lett. 88:1017002
    [Google Scholar]
  50. 50. 
    Qu C, Tylutki M, Stringari S, Pitaevskii LP 2017. Phys. Rev. A 95:3033614
    [Google Scholar]
  51. 51. 
    Tabor M 1989. Chaos and Integrability in Nonlinear Dynamics New York: John Wiley & Sons
    [Google Scholar]
  52. 52. 
    Usui A, Takeuchi H 2015. Phys. Rev. A 91:6063635
    [Google Scholar]
  53. 53. 
    Gallemí A, Pitaevskii LP, Stringari S, Recati A 2019. Phys. Rev. A 100(2):023607. https://doi.org/10.1103/PhysRevA.100.023607
    [Crossref] [Google Scholar]
  54. 54. 
    Ihara K, Kasamatsu K 2019. Phys. Rev. A 100:1013630
    [Google Scholar]
  55. 55. 
    Kasamatsu K, Tsubota M, Ueda M 2004. Phys. Rev. Lett. 93:25250406
    [Google Scholar]
  56. 56. 
    Eto M, Nitta M 2018. Phys. Rev. A 97:2023613
    [Google Scholar]
  57. 57. 
    Tylutki M, Pitaevskii LP, Recati A, Stringari S 2016. Phys. Rev. A 93:4043623
    [Google Scholar]
  58. 58. 
    Kang S, Seo SW, Takeuchi H, Shin Y 2019. Phys. Rev. Lett. 122:9095301
    [Google Scholar]
  59. 59. 
    Lin YJ, Compton RL, Jiménez-García K, Porto JV, Spielman IB 2009. Nature 462:7273628–32
    [Google Scholar]
  60. 60. 
    Lin YJ, Jiménez-García K, Spielman IB 2011. Nature 471:733683–86
    [Google Scholar]
  61. 61. 
    Galitski V, Spielman IB 2013. Nature 494:743549–54
    [Google Scholar]
  62. 62. 
    Dalibard J. 2016. Proceedings of the International School of Physics “Enrico Fermi” Course 191 M Inguscio, W Ketterle, S Stringari, G Roati 1–61 Amsterdam: IOS Press
    [Google Scholar]
  63. 63. 
    Galitski V, Juzeliūnas G, Spielman IB 2019. Phys. Today 72:138–44
    [Google Scholar]
  64. 64. 
    Wang P, Yu ZQ, Fu Z, Miao J, Huang L et al. 2012. Phys. Rev. Lett. 109:9095301
    [Google Scholar]
  65. 65. 
    Cheuk LW, Sommer AT, Hadzibabic Z, Yefsah T, Bakr WS, Zwierlein MW 2012. Phys. Rev. Lett. 109:9095302
    [Google Scholar]
  66. 66. 
    Zhai H 2015. Rep. Prog. Phys. 78:2026001
    [Google Scholar]
  67. 67. 
    Li Y, Martone GI, Stringari S 2015. Annu. Rev. Cold Atoms Mol. 3:201–50
    [Google Scholar]
  68. 68. 
    Li JR, Lee J, Huang W, Burchesky S, Shteynas B et al. 2017. Nature 543:764391–94
    [Google Scholar]
  69. 69. 
    Putra A, Salces-Cárcoba F, Yue Y, Sugawa S, Spielman IB 2020. Phys. Rev. Lett. 124:5053605
    [Google Scholar]
  70. 70. 
    Zheng W, Yu ZQ, Cui X, Zhai H 2013. J. Phys. B: Atom. Mol. Opt. Phys. 46:13134007
    [Google Scholar]
  71. 71. 
    Zhang JY, Ji SC, Chen Z, Zhang L, Du ZD et al. 2012. Phys. Rev. Lett. 109:11115301
    [Google Scholar]
  72. 72. 
    Khamehchi MA, Hossain K, Mossman ME, Zhang Y, Busch T et al. 2017. Phys. Rev. Lett. 118:15155301
    [Google Scholar]
  73. 73. 
    Li Y, Martone GI, Stringari S 2012. Europhys. Lett. 99:556008
    [Google Scholar]
  74. 74. 
    Ji SC, Zhang L, Xu XT, Wu Z, Deng Y et al. 2015. Phys. Rev. Lett. 114(10):105301. https://doi.org/10.1103/PhysRevLett.114.105301
    [Crossref] [Google Scholar]
  75. 75. 
    Ho TL, Zhang S 2011. Phys. Rev. Lett. 107:15150403
    [Google Scholar]
  76. 76. 
    Martone GI, Li Y, Stringari S 2014. Phys. Rev. A 90:4041604
    [Google Scholar]
  77. 77. 
    Martone GI, Li Y, Pitaevskii LP, Stringari S 2012. Phys. Rev. A 86:6063621
    [Google Scholar]
  78. 78. 
    Stringari S 1996. Phys. Rev. Lett. 77:122360–63
    [Google Scholar]
  79. 79. 
    Li Y, Martone GI, Pitaevskii LP, Stringari S 2013. Phys. Rev. Lett. 110(23):235302. https://doi.org/10.1103/PhysRevLett.110.235302
    [Crossref] [Google Scholar]
  80. 80. 
    Geier KT, Martone GI, Hauke P, Stringari S 2021. Phys. Rev. Lett. 127:115301. https://doi.org/10.1103/PhysRevLett.127.115301
    [Crossref] [Google Scholar]
  81. 81. 
    Chen L, Pu H, Yu ZQ, Zhang Y 2017. Phys. Rev. A 95:3033616
    [Google Scholar]
  82. 82. 
    Zhu Q, Zhang C, Wu B 2012. Eur. Phys. Lett. 100:50003
    [Google Scholar]
  83. 83. 
    Ozawa T, Pitaevskii LP, Stringari S 2013. Phys. Rev. A 87:6063610
    [Google Scholar]
  84. 84. 
    Baym G. 1968. Mathematical Methods in Solid State and Superfluid Theory RC Clark, GH Derrick 121–56 Edinburgh, UK: Oliver & Boyd
    [Google Scholar]
  85. 85. 
    Chen XL, Wang J, Li Y, Liu XJ, Hu H 2018. Phys. Rev. A 98:1013614
    [Google Scholar]
  86. 86. 
    Sánchez-Baena J, Boronat J, Mazzanti F 2020. Phys. Rev. A 101:4043602
    [Google Scholar]
  87. 87. 
    Guéry-Odelin D, Stringari S 1999. Phys. Rev. Lett. 83:224452–55
    [Google Scholar]
  88. 88. 
    Roccuzzo SM, Gallemí A, Recati A, Stringari S 2020. Phys. Rev. Lett. 124:4045702
    [Google Scholar]
  89. 89. 
    Maragò OM, Hopkins SA, Arlt J, Hodby E, Hechenblaikner G, Foot CJ 2000. Phys. Rev. Lett. 84:102056–59
    [Google Scholar]
  90. 90. 
    Ferrier-Barbut I, Wenzel M, Böttcher F, Langen T, Isoard M et al. 2018. Phys. Rev. Lett. 120:16160402
    [Google Scholar]
  91. 91. 
    Tanzi L, Maloberti JG, Biagioni G, Fioretti A, Gabbanini C, Modugno G 2021. Science 371:65341162–65
    [Google Scholar]
  92. 92. 
    Stringari S 2017. Phys. Rev. Lett. 118:14145302
    [Google Scholar]
  93. 93. 
    Qu C, Stringari S 2018. Phys. Rev. Lett. 120:18183202
    [Google Scholar]
  94. 94. 
    Radić J, Sedrakyan TA, Spielman IB, Galitski V 2011. Phys. Rev. A 84:6063604
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031820-121316
Loading
/content/journals/10.1146/annurev-conmatphys-031820-121316
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error