1932

Abstract

In noncentrosymmetric materials, the responses (for example, electrical and optical) generally depend on the direction of the external stimuli, called nonreciprocal phenomena. In quantum materials, these nonreciprocal responses are governed by the quantum geometric properties and symmetries of the electronic states. In particular, spatial inversion () and time-reversal () symmetries play crucial roles, which are also relevant to the geometric Berry phase. Here, we give a comprehensive review of the nonreciprocal transport and optical responses including () the magnetochiral anisotropy, i.e., the nonlinear resistivity with respect to the electric field, in semiconductors and metals, () the nonreciprocal transport in superconductors such as the nonreciprocal paraconductivity and the superconducting diode effect in bulk and Josephson junctions, and () the second-order nonlinear optical effects in the electric field of light, including the geometric shift current in nonmagnetic systems, magnetic systems, and superconductors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-032822-033734
2024-03-11
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/15/1/annurev-conmatphys-032822-033734.html?itemId=/content/journals/10.1146/annurev-conmatphys-032822-033734&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Tokura Y, Nagaosa N. 2018. Nat. Commun. 9:3740
  2. 2.
    Orenstein J, Moore J, Morimoto T, Torchinsky D, Harter J, Hsieh D. 2021. Annu. Rev. Condens. Matter Phys. 12:247–72
  3. 3.
    Ideue T, Iwasa Y. 2021. Annu. Rev. Condens. Matter Phys. 12:201–23
  4. 4.
    Onsager L. 1931. Phys. Rev. 37:4405–26
  5. 5.
    Kubo R. 1957. J. Phys. Soc. Jpn. 12:6570–86
  6. 6.
    Rikken GLJA, Fölling J, Wyder P. 2001. Phys. Rev. Lett. 87:23236602
  7. 7.
    Krstic V, Roth S, Burghard M, Kern K, Rikken GLJA 2002. J. Chem. Phys. 117:2411315–19
  8. 8.
    Rikken GLJA, Strohm C, Wyder P. 2002. Phys. Rev. Lett. 89:13133005
  9. 9.
    Rikken GLJA, Wyder P. 2005. Phys. Rev. Lett. 94:016601
  10. 10.
    Ideue T, Hamamoto K, Koshikawa S, Ezawa M, Shimizu S et al. 2017. Nat. Phys. 13:6578–83
  11. 11.
    Li Y, Li Y, Li P, Fang B, Yang X et al. 2021. Nat. Commun. 12:540
  12. 12.
    Morimoto T, Nagaosa N. 2016. Phys. Rev. Lett. 117:14146603
  13. 13.
    Wang Y, Legg HF, Bömerich T, Park J, Biesenkamp S et al. 2022. Phys. Rev. Lett. 128:17176602
  14. 14.
    Legg HF, Roessler M, Muenning F, Fan D, Breunig O et al. 2022. Nat. Nanotechnol. 17:7696–700
  15. 15.
    Yasuda K, Tsukazaki A, Yoshimi R, Takahashi KS, Kawasaki M, Tokura Y. 2016. Phys. Rev. Lett. 117:12127202
  16. 16.
    Yoshimi R, Kawamura M, Yasuda K, Tsukazaki A, Takahashi KS et al. 2022. Phys. Rev. B 106:11115202
  17. 17.
    Lee JH, Harada T, Trier F, Marcano L, Godel F et al. 2021. Nano Lett 21:208687–92
  18. 18.
    Yokouchi T, Kanazawa N, Kikkawa A, Morikawa D, Shibata K et al. 2017. Nat. Commun. 8:866
  19. 19.
    Ishizuka H, Nagaosa N. 2020. Nat. Commun. 11:2986
  20. 20.
    Isobe H, Nagaosa N. 2022. J. Phys. Soc. Jpn. 91:11115001
  21. 21.
    Isobe H, Xu SY, Fu L. 2020. Sci. Adv. 6:13eaay2497
  22. 22.
    Hayami S, Yatsushiro M. 2022. J. Phys. Soc. Jpn. 91:9063702
  23. 23.
    Akaike M, Nii Y, Masuda H, Onose Y. 2021. Phys. Rev. B 103:18184428
  24. 24.
    Yasuda K, Morimoto T, Yoshimi R, Mogi M, Tsukazaki A et al. 2020. Nat. Nanotechnol. 15:10831–35
  25. 25.
    Zhao W, Fei Z, Song T, Choi HK, Palomaki T et al. 2020. Nat. Mater. 19:5503–7
  26. 26.
    Yamamoto K, Ashida Y, Kawakami N. 2020. Phys. Rev. Res. 2:4043343
  27. 27.
    Bredol P, Boschker H, Braak D, Mannhart J. 2021. Phys. Rev. B 104:11115413
  28. 28.
    Mannhart J. 2018. J. Supercond. Novel Magn. 31:61649–57
  29. 29.
    King-Smith RD, Vanderbilt D. 1993. Phys. Rev. B 47:31651–54
  30. 30.
    Resta R. 1994. Rev. Mod. Phys. 66:3899–915
  31. 31.
    Kitamura S, Nagaosa N, Morimoto T. 2020. Commun. Phys. 3:63
  32. 32.
    Takayoshi S, Wu J, Oka T. 2021. SciPost Phys 11:075
  33. 33.
    Du ZZ, Lu HZ, Xie XC. 2021. Nat. Rev. Phys. 3:11744–52
  34. 34.
    Michishita Y, Nagaosa N. 2022. Phys. Rev. B 106:12125114
  35. 35.
    Ashida Y, Gong Z, Ueda M. 2020. Adv. Phys. 69:3249–435
  36. 36.
    Schmid A. 1983. Phys. Rev. Lett. 51:171506–9
  37. 37.
    Scheidl S, Vinokur VM. 2002. Phys. Rev. B 65:19195305
  38. 38.
    Hamamoto K, Park T, Ishizuka H, Nagaosa N. 2019. Phys. Rev. B 99:6064307
  39. 39.
    Ashcroft NW, Mermin ND. 1976. Solid State Physics Fort Worth, TX: Harcourt Coll, 1st ed.
  40. 40.
    Morimoto T, Nagaosa N. 2018. Sci. Rep. 8:2973
  41. 41.
    Nadeem M, Fuhrer MS, Wang X. 2023. Nat. Rev. Phys 59558–77
  42. 42.
    Schmidt H. 1968. Z. Phys. Hadrons Nuclei 216:4336–45
  43. 43.
    Wakatsuki R, Saito Y, Hoshino S, Itahashi YM, Ideue T et al. 2017. Sci. Adv. 3:4e1602390
  44. 44.
    Hoshino S, Wakatsuki R, Hamamoto K, Nagaosa N. 2018. Phys. Rev. B 98:5054510
  45. 45.
    Yasuda K, Yasuda H, Liang T, Yoshimi R, Tsukazaki A et al. 2019. Nat. Commun. 10:2734
  46. 46.
    Itahashi YM, Ideue T, Saito Y, Shimizu S, Ouchi T et al. 2020. Sci. Adv. 6:13eaay9120
  47. 47.
    Masuko M, Kawamura M, Yoshimi R, Hirayama M, Ikeda Y et al. 2022. NPJ Quantum Mater 7:104
  48. 48.
    Itahashi YM, Ideue T, Hoshino S, Goto C, Namiki H et al. 2022. Nat. Commun. 13:1659
  49. 49.
    Wu Y, Wang Q, Zhou X, Wang J, Dong P et al. 2022. NPJ Quantum Mater 7:105
  50. 50.
    Zhang E, Xu X, Zou YC, Ai L, Dong X et al. 2020. Nat. Commun. 11:5634
  51. 51.
    Daido A, Ikeda Y, Yanase Y. 2022. Phys. Rev. Lett. 128:3037001
  52. 52.
    Ando F, Miyasaka Y, Li T, Ishizuka J, Arakawa T et al. 2020. Nature 584:7821373–76
  53. 53.
    Narita H, Ishizuka J, Kawarazaki R, Kan D, Shiota Y et al. 2022. Nat. Nanotechnol. 17:8823–28
  54. 54.
    Kawarazaki R, Narita H, Miyasaka Y, Ikeda Y, Hisatomi R et al. 2022. Appl. Phys. Express 15:11113001
  55. 55.
    Bauriedl L, Bäuml C, Fuchs L, Baumgartner C, Paulik N et al. 2022. Nat. Commun. 13:4266
  56. 56.
    Yun J, Son S, Shin J, Park G, Zhang K et al. 2023. Phys. Rev. Res. 5:L022064
  57. 57.
    Lin JX, Siriviboon P, Scammell HD, Liu S, Rhodes D et al. 2022. Nat. Phys. 18:101221–27
  58. 58.
    Lyu YY, Jiang J, Wang YL, Xiao ZL, Dong S et al. 2021. Nat. Commun. 12:2703
  59. 59.
    Hou Y, Nichele F, Chi H, Lodesani A, Wu Y et al. 2023. Phys. Rev. Lett. 131:027001
  60. 60.
    Suri D, Kamra A, Meier TNG, Kronseder M, Belzig W et al. 2022. Appl. Phys. Lett. 121:10102601
  61. 61.
    Sundaresh A, Väyrynen JI, Lyanda-Geller Y, Rokhinson LP. 2023. Nat. Commun. 14:1628
  62. 62.
    Satchell N, Shepley PM, Rosamond MC, Burnell G. 2023. J. Appl. Phys. 133:203901
  63. 63.
    Gutfreund A, Matsuki H, Plastovets V, Noah A, Gorzawski L et al. 2023. Nat. Commun. 14:1630
  64. 64.
    Mizuno A, Tsuchiya Y, Awaji S, Yoshida Y. 2022. IEEE Trans. Appl. Supercond. 32:66601005
  65. 65.
    Wu H, Wang Y, Xu Y, Sivakumar PK, Pasco C et al. 2022. Nature 604:7907653–56
  66. 66.
    Vodolazov DY, Peeters FM. 2005. Phys. Rev. B 72:17172508
  67. 67.
    Touitou N, Bernstein P, Hamet JF, Simon C, Méchin L et al. 2004. Appl. Phys. Lett. 85:101742–44
  68. 68.
    Vodolazov DY, Gribkov BA, Gusev SA, Klimov AY, Nozdrin YN et al. 2005. Phys. Rev. B 72:6064509
  69. 69.
    Morelle M, Moshchalkov VV. 2006. Appl. Phys. Lett. 88:17172507
  70. 70.
    Papon A, Senapati K, Barber ZH. 2008. Appl. Phys. Lett. 93:17172507
  71. 71.
    Sun Y, Ohnuma H, Ayukawa SY, Noji T, Koike Y et al. 2020. Phys. Rev. B 101:13134516
  72. 72.
    Nawaz S, Arpaia R, Lombardi F, Bauch T. 2013. Phys. Rev. Lett. 110:16167004
  73. 73.
    Li J, Yuan J, Yuan YH, Ge JY, Li MY et al. 2013. Appl. Phys. Lett. 103:6062603
  74. 74.
    He JJ, Tanaka Y, Nagaosa N. 2022. New J. Phys. 24:5053014
  75. 75.
    Yuan NFQ, Fu L. 2022. PNAS 119:e2119548119
  76. 76.
    Ilić S, Bergeret FS. 2022. Phys. Rev. Lett. 128:17177001
  77. 77.
    Zinkl B, Hamamoto K, Sigrist M. 2022. Phys. Rev. Res. 4:3033167
  78. 78.
    Scammell HD, Li JIA, Scheurer MS. 2022. 2D Mater 9:2025027
  79. 79.
    Daido A, Yanase Y. 2022. Phys. Rev. B 106:20205206
  80. 80.
    Ikeda Y, Daido A, Yanase Y. 2022. arXiv:2212.09211 [cond-mat.supr-con]
  81. 81.
    Bauer E, Sigrist M eds. 2012. Non-Centrosymmetric Superconductors: Introduction and Overview Berlin/Heidelberg: Springer Science & Business Media
  82. 82.
    Smidman M, Salamon MB, Yuan HQ, Agterberg DF. 2017. Rep. Prog. Phys. 80:3036501
  83. 83.
    Kanasugi S, Yanase Y. 2022. Commun. Phys. 5:39
  84. 84.
    Aoki D, Brison JP, Flouquet J, Ishida K, Knebel G et al. 2022. J. Phys. Condens. Matter 34:24243002
  85. 85.
    Hu J, Wu C, Dai X. 2007. Phys. Rev. Lett. 99:6067004
  86. 86.
    Misaki K, Nagaosa N. 2021. Phys. Rev. B 103:24245302
  87. 87.
    Zhang Y, Gu Y, Li P, Hu J, Jiang K. 2022. Phys. Rev. X 12:4041013
  88. 88.
    Tanaka Y, Lu B, Nagaosa N. 2022. Phys. Rev. B 106:21214524
  89. 89.
    Davydova M, Prembabu S, Fu L. 2022. Sci. Adv. 8:23eabo0309
  90. 90.
    Golod T, Krasnov VM. 2022. Nat. Commun. 13:3658
  91. 91.
    Jeon KR, Kim JK, Yoon J, Jeon JC, Han H et al. 2022. Nat. Mater. 21:91008–13
  92. 92.
    Pal B, Chakraborty A, Sivakumar PK, Davydova M, Gopi AK et al. 2022. Nat. Phys. 18:101228–33
  93. 93.
    Baumgartner C, Fuchs L, Costa A, Reinhardt S, Gronin S et al. 2022. Nat. Nanotechnol. 17:39–44
  94. 94.
    Boyd RW. 2003. Nonlinear Optics London: Academic
  95. 95.
    Bloembergen N. 1996. Nonlinear Optics Singapore: World Sci
  96. 96.
    Sturman BJ, Fridkin VM. 1992. Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials 8 Philadelphia: CRC
  97. 97.
    Nie W, Tsai H, Asadpour R, Blancon JC, Neukirch AJ et al. 2015. Science 347:6221522–25
  98. 98.
    Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E et al. 2015. Science 347:6221519–22
  99. 99.
    de Quilettes DW, Vorpahl SM, Stranks SD, Nagaoka H, Eperon GE et al. 2015. Science 348:6235683–86
  100. 100.
    von Baltz R, Kraut W. 1981. Phys. Rev. B 23:105590–96
  101. 101.
    Sipe JE, Shkrebtii AI. 2000. Phys. Rev. B 61:85337–52
  102. 102.
    Young SM, Rappe AM. 2012. Phys. Rev. Lett. 109:11116601
  103. 103.
    Morimoto T, Nagaosa N. 2016. Sci. Adv. 2:5e1501524
  104. 104.
    Parker DE, Morimoto T, Orenstein J, Moore JE. 2019. Phys. Rev. B 99:4045121
  105. 105.
    Vanderbilt D, King-Smith RD. 1993. Phys. Rev. B 48:74442–55
  106. 106.
    Sotome M, Nakamura M, Fujioka J, Ogino M, Kaneko Y et al. 2019. PNAS 116:61929–33
  107. 107.
    Morimoto T, Nagaosa N. 2016. Phys. Rev. B 94:3035117
  108. 108.
    Morimoto T, Nagaosa N. 2019. Phys. Rev. B 100:23235138
  109. 109.
    Sotome M, Nakamura M, Morimoto T, Zhang Y, Guo GY et al. 2021. Phys. Rev. B 103:24L241111
  110. 110.
    Okamura Y, Morimoto T, Ogawa N, Kaneko Y, Guo GY et al. 2022. PNAS 119:14e2122313119
  111. 111.
    Hatada H, Nakamura M, Sotome M, Kaneko Y, Ogawa N et al. 2020. PNAS 117:20411
  112. 112.
    Ishizuka H, Nagaosa N. 2021. PNAS 118:10e2023642118
  113. 113.
    Osterhoudt GB, Diebel LK, Gray MJ, Yang X, Stanco J et al. 2019. Nat. Mater. 18:5471–75
  114. 114.
    Akamatsu T, Ideue T, Zhou L, Dong Y, Kitamura S et al. 2021. Science 372:653768–72
  115. 115.
    Xu T, Morimoto T, Moore JE. 2019. Phys. Rev. B 100:22220501
  116. 116.
    Moore JE, Orenstein J. 2010. Phys. Rev. Lett. 105:2026805
  117. 117.
    Holder T, Kaplan D, Yan B. 2020. Phys. Rev. Res. 2:3033100
  118. 118.
    Zhang Y, Holder T, Ishizuka H, de Juan F, Nagaosa N et al. 2019. Nat. Commun. 10:3783
  119. 119.
    Watanabe H, Yanase Y. 2021. Phys. Rev. X 11:011001
  120. 120.
    Ahn J, Guo GY, Nagaosa N. 2020. Phys. Rev. X 10:4041041
  121. 121.
    Watanabe H, Daido A, Yanase Y. 2022. Phys. Rev. B 105:2024308
  122. 122.
    Watanabe H, Yanase Y. 2020. Phys. Rev. Res. 2:4043081
  123. 123.
    Ogawa N, Bahramy MS, Murakawa H, Kaneko Y, Tokura Y. 2013. Phys. Rev. B 88:3035130
  124. 124.
    Burger AM, Agarwal R, Aprelev A, Schruba E, Gutierrez-Perez A et al. 2019. Sci. Adv. 5:eaau5588
  125. 125.
    Olbrich P, Zoth C, Vierling P, Dantscher KM, Budkin GV et al. 2013. Phys. Rev. B 87:23235439
  126. 126.
    Ogawa N, Yoshimi R, Yasuda K, Tsukazaki A, Kawasaki M, Tokura Y. 2016. Nat. Commun. 7:12246
  127. 127.
    Li G, Mikhaylovskiy RV, Grishunin KA, Costa JD, Rasing T, Kimel AV. 2018. J. Phys. D Appl. Phys. 51:13134001
  128. 128.
    Song T, Anderson E, Tu MWY, Seyler K, Taniguchi T et al. 2021. Sci. Adv. 7:36eabg8094
  129. 129.
    Matsubara M, Kobayashi T, Watanabe H, Yanase Y, Iwata S, Kato T. 2022. Nat. Commun. 13:6708
  130. 130.
    Michishita Y, Peters R. 2021. Phys. Rev. B 103:19195133
  131. 131.
    Watanabe H, Daido A, Yanase Y. 2022. Phys. Rev. B 105:10L100504
  132. 132.
    Tanaka H, Watanabe H, Yanase Y. 2023. Phys. Rev. B 107:2024513
  133. 133.
    Ahn J, Nagaosa N. 2021. Nat. Commun. 12:1617
  134. 134.
    Ramires A, Sigrist M. 2016. Phys. Rev. B 94:10104501
  135. 135.
    Ramires A, Agterberg DF, Sigrist M. 2018. Phys. Rev. B 98:2024501
  136. 136.
    Linder J, Robinson JWA. 2015. Nat. Phys. 11:4307–15
  137. 137.
    Tanaka Y, Sato M, Nagaosa N. 2012. J. Phys. Soc. Jpn. 81:011013
  138. 138.
    Sato M, Fujimoto S. 2016. J. Phys. Soc. Jpn. 85:7072001
  139. 139.
    Nakamura S, Katsumi K, Terai H, Shimano R. 2020. Phys. Rev. Lett. 125:9097004
  140. 140.
    Xiao D, Chang MC, Niu Q. 2010. Rev. Mod. Phys. 82:31959–2007
  141. 141.
    Aoki H, Tsuji N, Eckstein M, Kollar M, Oka T, Werner P. 2014. Rev. Mod. Phys. 86:2779–837
/content/journals/10.1146/annurev-conmatphys-032822-033734
Loading
/content/journals/10.1146/annurev-conmatphys-032822-033734
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error