1932

Abstract

In noncentrosymmetric materials, the responses (for example, electrical and optical) generally depend on the direction of the external stimuli, called nonreciprocal phenomena. In quantum materials, these nonreciprocal responses are governed by the quantum geometric properties and symmetries of the electronic states. In particular, spatial inversion () and time-reversal () symmetries play crucial roles, which are also relevant to the geometric Berry phase. Here, we give a comprehensive review of the nonreciprocal transport and optical responses including () the magnetochiral anisotropy, i.e., the nonlinear resistivity with respect to the electric field, in semiconductors and metals, () the nonreciprocal transport in superconductors such as the nonreciprocal paraconductivity and the superconducting diode effect in bulk and Josephson junctions, and () the second-order nonlinear optical effects in the electric field of light, including the geometric shift current in nonmagnetic systems, magnetic systems, and superconductors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-032822-033734
2024-03-11
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/15/1/annurev-conmatphys-032822-033734.html?itemId=/content/journals/10.1146/annurev-conmatphys-032822-033734&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Tokura Y, Nagaosa N. 2018. Nat. Commun. 9:3740
    [Google Scholar]
  2. 2.
    Orenstein J, Moore J, Morimoto T, Torchinsky D, Harter J, Hsieh D. 2021. Annu. Rev. Condens. Matter Phys. 12:247–72
    [Google Scholar]
  3. 3.
    Ideue T, Iwasa Y. 2021. Annu. Rev. Condens. Matter Phys. 12:201–23
    [Google Scholar]
  4. 4.
    Onsager L. 1931. Phys. Rev. 37:4405–26
    [Google Scholar]
  5. 5.
    Kubo R. 1957. J. Phys. Soc. Jpn. 12:6570–86
    [Google Scholar]
  6. 6.
    Rikken GLJA, Fölling J, Wyder P. 2001. Phys. Rev. Lett. 87:23236602
    [Google Scholar]
  7. 7.
    Krstic V, Roth S, Burghard M, Kern K, Rikken GLJA 2002. J. Chem. Phys. 117:2411315–19
    [Google Scholar]
  8. 8.
    Rikken GLJA, Strohm C, Wyder P. 2002. Phys. Rev. Lett. 89:13133005
    [Google Scholar]
  9. 9.
    Rikken GLJA, Wyder P. 2005. Phys. Rev. Lett. 94:016601
    [Google Scholar]
  10. 10.
    Ideue T, Hamamoto K, Koshikawa S, Ezawa M, Shimizu S et al. 2017. Nat. Phys. 13:6578–83
    [Google Scholar]
  11. 11.
    Li Y, Li Y, Li P, Fang B, Yang X et al. 2021. Nat. Commun. 12:540
    [Google Scholar]
  12. 12.
    Morimoto T, Nagaosa N. 2016. Phys. Rev. Lett. 117:14146603
    [Google Scholar]
  13. 13.
    Wang Y, Legg HF, Bömerich T, Park J, Biesenkamp S et al. 2022. Phys. Rev. Lett. 128:17176602
    [Google Scholar]
  14. 14.
    Legg HF, Roessler M, Muenning F, Fan D, Breunig O et al. 2022. Nat. Nanotechnol. 17:7696–700
    [Google Scholar]
  15. 15.
    Yasuda K, Tsukazaki A, Yoshimi R, Takahashi KS, Kawasaki M, Tokura Y. 2016. Phys. Rev. Lett. 117:12127202
    [Google Scholar]
  16. 16.
    Yoshimi R, Kawamura M, Yasuda K, Tsukazaki A, Takahashi KS et al. 2022. Phys. Rev. B 106:11115202
    [Google Scholar]
  17. 17.
    Lee JH, Harada T, Trier F, Marcano L, Godel F et al. 2021. Nano Lett 21:208687–92
    [Google Scholar]
  18. 18.
    Yokouchi T, Kanazawa N, Kikkawa A, Morikawa D, Shibata K et al. 2017. Nat. Commun. 8:866
    [Google Scholar]
  19. 19.
    Ishizuka H, Nagaosa N. 2020. Nat. Commun. 11:2986
    [Google Scholar]
  20. 20.
    Isobe H, Nagaosa N. 2022. J. Phys. Soc. Jpn. 91:11115001
    [Google Scholar]
  21. 21.
    Isobe H, Xu SY, Fu L. 2020. Sci. Adv. 6:13eaay2497
    [Google Scholar]
  22. 22.
    Hayami S, Yatsushiro M. 2022. J. Phys. Soc. Jpn. 91:9063702
    [Google Scholar]
  23. 23.
    Akaike M, Nii Y, Masuda H, Onose Y. 2021. Phys. Rev. B 103:18184428
    [Google Scholar]
  24. 24.
    Yasuda K, Morimoto T, Yoshimi R, Mogi M, Tsukazaki A et al. 2020. Nat. Nanotechnol. 15:10831–35
    [Google Scholar]
  25. 25.
    Zhao W, Fei Z, Song T, Choi HK, Palomaki T et al. 2020. Nat. Mater. 19:5503–7
    [Google Scholar]
  26. 26.
    Yamamoto K, Ashida Y, Kawakami N. 2020. Phys. Rev. Res. 2:4043343
    [Google Scholar]
  27. 27.
    Bredol P, Boschker H, Braak D, Mannhart J. 2021. Phys. Rev. B 104:11115413
    [Google Scholar]
  28. 28.
    Mannhart J. 2018. J. Supercond. Novel Magn. 31:61649–57
    [Google Scholar]
  29. 29.
    King-Smith RD, Vanderbilt D. 1993. Phys. Rev. B 47:31651–54
    [Google Scholar]
  30. 30.
    Resta R. 1994. Rev. Mod. Phys. 66:3899–915
    [Google Scholar]
  31. 31.
    Kitamura S, Nagaosa N, Morimoto T. 2020. Commun. Phys. 3:63
    [Google Scholar]
  32. 32.
    Takayoshi S, Wu J, Oka T. 2021. SciPost Phys 11:075
    [Google Scholar]
  33. 33.
    Du ZZ, Lu HZ, Xie XC. 2021. Nat. Rev. Phys. 3:11744–52
    [Google Scholar]
  34. 34.
    Michishita Y, Nagaosa N. 2022. Phys. Rev. B 106:12125114
    [Google Scholar]
  35. 35.
    Ashida Y, Gong Z, Ueda M. 2020. Adv. Phys. 69:3249–435
    [Google Scholar]
  36. 36.
    Schmid A. 1983. Phys. Rev. Lett. 51:171506–9
    [Google Scholar]
  37. 37.
    Scheidl S, Vinokur VM. 2002. Phys. Rev. B 65:19195305
    [Google Scholar]
  38. 38.
    Hamamoto K, Park T, Ishizuka H, Nagaosa N. 2019. Phys. Rev. B 99:6064307
    [Google Scholar]
  39. 39.
    Ashcroft NW, Mermin ND. 1976. Solid State Physics Fort Worth, TX: Harcourt Coll, 1st ed.
    [Google Scholar]
  40. 40.
    Morimoto T, Nagaosa N. 2018. Sci. Rep. 8:2973
    [Google Scholar]
  41. 41.
    Nadeem M, Fuhrer MS, Wang X. 2023. Nat. Rev. Phys 59558–77
    [Google Scholar]
  42. 42.
    Schmidt H. 1968. Z. Phys. Hadrons Nuclei 216:4336–45
    [Google Scholar]
  43. 43.
    Wakatsuki R, Saito Y, Hoshino S, Itahashi YM, Ideue T et al. 2017. Sci. Adv. 3:4e1602390
    [Google Scholar]
  44. 44.
    Hoshino S, Wakatsuki R, Hamamoto K, Nagaosa N. 2018. Phys. Rev. B 98:5054510
    [Google Scholar]
  45. 45.
    Yasuda K, Yasuda H, Liang T, Yoshimi R, Tsukazaki A et al. 2019. Nat. Commun. 10:2734
    [Google Scholar]
  46. 46.
    Itahashi YM, Ideue T, Saito Y, Shimizu S, Ouchi T et al. 2020. Sci. Adv. 6:13eaay9120
    [Google Scholar]
  47. 47.
    Masuko M, Kawamura M, Yoshimi R, Hirayama M, Ikeda Y et al. 2022. NPJ Quantum Mater 7:104
    [Google Scholar]
  48. 48.
    Itahashi YM, Ideue T, Hoshino S, Goto C, Namiki H et al. 2022. Nat. Commun. 13:1659
    [Google Scholar]
  49. 49.
    Wu Y, Wang Q, Zhou X, Wang J, Dong P et al. 2022. NPJ Quantum Mater 7:105
    [Google Scholar]
  50. 50.
    Zhang E, Xu X, Zou YC, Ai L, Dong X et al. 2020. Nat. Commun. 11:5634
    [Google Scholar]
  51. 51.
    Daido A, Ikeda Y, Yanase Y. 2022. Phys. Rev. Lett. 128:3037001
    [Google Scholar]
  52. 52.
    Ando F, Miyasaka Y, Li T, Ishizuka J, Arakawa T et al. 2020. Nature 584:7821373–76
    [Google Scholar]
  53. 53.
    Narita H, Ishizuka J, Kawarazaki R, Kan D, Shiota Y et al. 2022. Nat. Nanotechnol. 17:8823–28
    [Google Scholar]
  54. 54.
    Kawarazaki R, Narita H, Miyasaka Y, Ikeda Y, Hisatomi R et al. 2022. Appl. Phys. Express 15:11113001
    [Google Scholar]
  55. 55.
    Bauriedl L, Bäuml C, Fuchs L, Baumgartner C, Paulik N et al. 2022. Nat. Commun. 13:4266
    [Google Scholar]
  56. 56.
    Yun J, Son S, Shin J, Park G, Zhang K et al. 2023. Phys. Rev. Res. 5:L022064
    [Google Scholar]
  57. 57.
    Lin JX, Siriviboon P, Scammell HD, Liu S, Rhodes D et al. 2022. Nat. Phys. 18:101221–27
    [Google Scholar]
  58. 58.
    Lyu YY, Jiang J, Wang YL, Xiao ZL, Dong S et al. 2021. Nat. Commun. 12:2703
    [Google Scholar]
  59. 59.
    Hou Y, Nichele F, Chi H, Lodesani A, Wu Y et al. 2023. Phys. Rev. Lett. 131:027001
    [Google Scholar]
  60. 60.
    Suri D, Kamra A, Meier TNG, Kronseder M, Belzig W et al. 2022. Appl. Phys. Lett. 121:10102601
    [Google Scholar]
  61. 61.
    Sundaresh A, Väyrynen JI, Lyanda-Geller Y, Rokhinson LP. 2023. Nat. Commun. 14:1628
    [Google Scholar]
  62. 62.
    Satchell N, Shepley PM, Rosamond MC, Burnell G. 2023. J. Appl. Phys. 133:203901
    [Google Scholar]
  63. 63.
    Gutfreund A, Matsuki H, Plastovets V, Noah A, Gorzawski L et al. 2023. Nat. Commun. 14:1630
    [Google Scholar]
  64. 64.
    Mizuno A, Tsuchiya Y, Awaji S, Yoshida Y. 2022. IEEE Trans. Appl. Supercond. 32:66601005
    [Google Scholar]
  65. 65.
    Wu H, Wang Y, Xu Y, Sivakumar PK, Pasco C et al. 2022. Nature 604:7907653–56
    [Google Scholar]
  66. 66.
    Vodolazov DY, Peeters FM. 2005. Phys. Rev. B 72:17172508
    [Google Scholar]
  67. 67.
    Touitou N, Bernstein P, Hamet JF, Simon C, Méchin L et al. 2004. Appl. Phys. Lett. 85:101742–44
    [Google Scholar]
  68. 68.
    Vodolazov DY, Gribkov BA, Gusev SA, Klimov AY, Nozdrin YN et al. 2005. Phys. Rev. B 72:6064509
    [Google Scholar]
  69. 69.
    Morelle M, Moshchalkov VV. 2006. Appl. Phys. Lett. 88:17172507
    [Google Scholar]
  70. 70.
    Papon A, Senapati K, Barber ZH. 2008. Appl. Phys. Lett. 93:17172507
    [Google Scholar]
  71. 71.
    Sun Y, Ohnuma H, Ayukawa SY, Noji T, Koike Y et al. 2020. Phys. Rev. B 101:13134516
    [Google Scholar]
  72. 72.
    Nawaz S, Arpaia R, Lombardi F, Bauch T. 2013. Phys. Rev. Lett. 110:16167004
    [Google Scholar]
  73. 73.
    Li J, Yuan J, Yuan YH, Ge JY, Li MY et al. 2013. Appl. Phys. Lett. 103:6062603
    [Google Scholar]
  74. 74.
    He JJ, Tanaka Y, Nagaosa N. 2022. New J. Phys. 24:5053014
    [Google Scholar]
  75. 75.
    Yuan NFQ, Fu L. 2022. PNAS 119:e2119548119
    [Google Scholar]
  76. 76.
    Ilić S, Bergeret FS. 2022. Phys. Rev. Lett. 128:17177001
    [Google Scholar]
  77. 77.
    Zinkl B, Hamamoto K, Sigrist M. 2022. Phys. Rev. Res. 4:3033167
    [Google Scholar]
  78. 78.
    Scammell HD, Li JIA, Scheurer MS. 2022. 2D Mater 9:2025027
    [Google Scholar]
  79. 79.
    Daido A, Yanase Y. 2022. Phys. Rev. B 106:20205206
    [Google Scholar]
  80. 80.
    Ikeda Y, Daido A, Yanase Y. 2022. arXiv:2212.09211 [cond-mat.supr-con]
  81. 81.
    Bauer E, Sigrist M eds. 2012. Non-Centrosymmetric Superconductors: Introduction and Overview Berlin/Heidelberg: Springer Science & Business Media
    [Google Scholar]
  82. 82.
    Smidman M, Salamon MB, Yuan HQ, Agterberg DF. 2017. Rep. Prog. Phys. 80:3036501
    [Google Scholar]
  83. 83.
    Kanasugi S, Yanase Y. 2022. Commun. Phys. 5:39
    [Google Scholar]
  84. 84.
    Aoki D, Brison JP, Flouquet J, Ishida K, Knebel G et al. 2022. J. Phys. Condens. Matter 34:24243002
    [Google Scholar]
  85. 85.
    Hu J, Wu C, Dai X. 2007. Phys. Rev. Lett. 99:6067004
    [Google Scholar]
  86. 86.
    Misaki K, Nagaosa N. 2021. Phys. Rev. B 103:24245302
    [Google Scholar]
  87. 87.
    Zhang Y, Gu Y, Li P, Hu J, Jiang K. 2022. Phys. Rev. X 12:4041013
    [Google Scholar]
  88. 88.
    Tanaka Y, Lu B, Nagaosa N. 2022. Phys. Rev. B 106:21214524
    [Google Scholar]
  89. 89.
    Davydova M, Prembabu S, Fu L. 2022. Sci. Adv. 8:23eabo0309
    [Google Scholar]
  90. 90.
    Golod T, Krasnov VM. 2022. Nat. Commun. 13:3658
    [Google Scholar]
  91. 91.
    Jeon KR, Kim JK, Yoon J, Jeon JC, Han H et al. 2022. Nat. Mater. 21:91008–13
    [Google Scholar]
  92. 92.
    Pal B, Chakraborty A, Sivakumar PK, Davydova M, Gopi AK et al. 2022. Nat. Phys. 18:101228–33
    [Google Scholar]
  93. 93.
    Baumgartner C, Fuchs L, Costa A, Reinhardt S, Gronin S et al. 2022. Nat. Nanotechnol. 17:39–44
    [Google Scholar]
  94. 94.
    Boyd RW. 2003. Nonlinear Optics London: Academic
    [Google Scholar]
  95. 95.
    Bloembergen N. 1996. Nonlinear Optics Singapore: World Sci
    [Google Scholar]
  96. 96.
    Sturman BJ, Fridkin VM. 1992. Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials 8 Philadelphia: CRC
    [Google Scholar]
  97. 97.
    Nie W, Tsai H, Asadpour R, Blancon JC, Neukirch AJ et al. 2015. Science 347:6221522–25
    [Google Scholar]
  98. 98.
    Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E et al. 2015. Science 347:6221519–22
    [Google Scholar]
  99. 99.
    de Quilettes DW, Vorpahl SM, Stranks SD, Nagaoka H, Eperon GE et al. 2015. Science 348:6235683–86
    [Google Scholar]
  100. 100.
    von Baltz R, Kraut W. 1981. Phys. Rev. B 23:105590–96
    [Google Scholar]
  101. 101.
    Sipe JE, Shkrebtii AI. 2000. Phys. Rev. B 61:85337–52
    [Google Scholar]
  102. 102.
    Young SM, Rappe AM. 2012. Phys. Rev. Lett. 109:11116601
    [Google Scholar]
  103. 103.
    Morimoto T, Nagaosa N. 2016. Sci. Adv. 2:5e1501524
    [Google Scholar]
  104. 104.
    Parker DE, Morimoto T, Orenstein J, Moore JE. 2019. Phys. Rev. B 99:4045121
    [Google Scholar]
  105. 105.
    Vanderbilt D, King-Smith RD. 1993. Phys. Rev. B 48:74442–55
    [Google Scholar]
  106. 106.
    Sotome M, Nakamura M, Fujioka J, Ogino M, Kaneko Y et al. 2019. PNAS 116:61929–33
    [Google Scholar]
  107. 107.
    Morimoto T, Nagaosa N. 2016. Phys. Rev. B 94:3035117
    [Google Scholar]
  108. 108.
    Morimoto T, Nagaosa N. 2019. Phys. Rev. B 100:23235138
    [Google Scholar]
  109. 109.
    Sotome M, Nakamura M, Morimoto T, Zhang Y, Guo GY et al. 2021. Phys. Rev. B 103:24L241111
    [Google Scholar]
  110. 110.
    Okamura Y, Morimoto T, Ogawa N, Kaneko Y, Guo GY et al. 2022. PNAS 119:14e2122313119
    [Google Scholar]
  111. 111.
    Hatada H, Nakamura M, Sotome M, Kaneko Y, Ogawa N et al. 2020. PNAS 117:20411
    [Google Scholar]
  112. 112.
    Ishizuka H, Nagaosa N. 2021. PNAS 118:10e2023642118
    [Google Scholar]
  113. 113.
    Osterhoudt GB, Diebel LK, Gray MJ, Yang X, Stanco J et al. 2019. Nat. Mater. 18:5471–75
    [Google Scholar]
  114. 114.
    Akamatsu T, Ideue T, Zhou L, Dong Y, Kitamura S et al. 2021. Science 372:653768–72
    [Google Scholar]
  115. 115.
    Xu T, Morimoto T, Moore JE. 2019. Phys. Rev. B 100:22220501
    [Google Scholar]
  116. 116.
    Moore JE, Orenstein J. 2010. Phys. Rev. Lett. 105:2026805
    [Google Scholar]
  117. 117.
    Holder T, Kaplan D, Yan B. 2020. Phys. Rev. Res. 2:3033100
    [Google Scholar]
  118. 118.
    Zhang Y, Holder T, Ishizuka H, de Juan F, Nagaosa N et al. 2019. Nat. Commun. 10:3783
    [Google Scholar]
  119. 119.
    Watanabe H, Yanase Y. 2021. Phys. Rev. X 11:011001
    [Google Scholar]
  120. 120.
    Ahn J, Guo GY, Nagaosa N. 2020. Phys. Rev. X 10:4041041
    [Google Scholar]
  121. 121.
    Watanabe H, Daido A, Yanase Y. 2022. Phys. Rev. B 105:2024308
    [Google Scholar]
  122. 122.
    Watanabe H, Yanase Y. 2020. Phys. Rev. Res. 2:4043081
    [Google Scholar]
  123. 123.
    Ogawa N, Bahramy MS, Murakawa H, Kaneko Y, Tokura Y. 2013. Phys. Rev. B 88:3035130
    [Google Scholar]
  124. 124.
    Burger AM, Agarwal R, Aprelev A, Schruba E, Gutierrez-Perez A et al. 2019. Sci. Adv. 5:eaau5588
    [Google Scholar]
  125. 125.
    Olbrich P, Zoth C, Vierling P, Dantscher KM, Budkin GV et al. 2013. Phys. Rev. B 87:23235439
    [Google Scholar]
  126. 126.
    Ogawa N, Yoshimi R, Yasuda K, Tsukazaki A, Kawasaki M, Tokura Y. 2016. Nat. Commun. 7:12246
    [Google Scholar]
  127. 127.
    Li G, Mikhaylovskiy RV, Grishunin KA, Costa JD, Rasing T, Kimel AV. 2018. J. Phys. D Appl. Phys. 51:13134001
    [Google Scholar]
  128. 128.
    Song T, Anderson E, Tu MWY, Seyler K, Taniguchi T et al. 2021. Sci. Adv. 7:36eabg8094
    [Google Scholar]
  129. 129.
    Matsubara M, Kobayashi T, Watanabe H, Yanase Y, Iwata S, Kato T. 2022. Nat. Commun. 13:6708
    [Google Scholar]
  130. 130.
    Michishita Y, Peters R. 2021. Phys. Rev. B 103:19195133
    [Google Scholar]
  131. 131.
    Watanabe H, Daido A, Yanase Y. 2022. Phys. Rev. B 105:10L100504
    [Google Scholar]
  132. 132.
    Tanaka H, Watanabe H, Yanase Y. 2023. Phys. Rev. B 107:2024513
    [Google Scholar]
  133. 133.
    Ahn J, Nagaosa N. 2021. Nat. Commun. 12:1617
    [Google Scholar]
  134. 134.
    Ramires A, Sigrist M. 2016. Phys. Rev. B 94:10104501
    [Google Scholar]
  135. 135.
    Ramires A, Agterberg DF, Sigrist M. 2018. Phys. Rev. B 98:2024501
    [Google Scholar]
  136. 136.
    Linder J, Robinson JWA. 2015. Nat. Phys. 11:4307–15
    [Google Scholar]
  137. 137.
    Tanaka Y, Sato M, Nagaosa N. 2012. J. Phys. Soc. Jpn. 81:011013
    [Google Scholar]
  138. 138.
    Sato M, Fujimoto S. 2016. J. Phys. Soc. Jpn. 85:7072001
    [Google Scholar]
  139. 139.
    Nakamura S, Katsumi K, Terai H, Shimano R. 2020. Phys. Rev. Lett. 125:9097004
    [Google Scholar]
  140. 140.
    Xiao D, Chang MC, Niu Q. 2010. Rev. Mod. Phys. 82:31959–2007
    [Google Scholar]
  141. 141.
    Aoki H, Tsuji N, Eckstein M, Kollar M, Oka T, Werner P. 2014. Rev. Mod. Phys. 86:2779–837
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-032822-033734
Loading
/content/journals/10.1146/annurev-conmatphys-032822-033734
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error