1932

Abstract

Underwater soft robots are typically constructed from soft and flexible materials, which enable them to adapt to aquatic environments where the terrain can be complex. They are often inspired by soft-bodied aquatic animals and can be used for a range of tasks, such as underwater exploration, environmental monitoring, and rescue operations. However, the design of these robots presents significant challenges, as it requires soft materials and systems that can withstand the harsh and varied conditions of ocean environments. This review delves into the physics of soft materials and outlines the constitutive models for such materials. Through an exploration of the muscle structures in aquatic creatures like octopuses and stingrays, we highlight the interplay between the materials that make up artificial muscles and how these muscles interact with their external surroundings. Finally, we conclude by outlining unresolved challenges and providing potential avenues for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-032822-041146
2024-03-11
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/15/1/annurev-conmatphys-032822-041146.html?itemId=/content/journals/10.1146/annurev-conmatphys-032822-041146&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Laschi C, Mazzolai B, Cianchetti M. 2016. Sci. Robot. 1:eaah3690
  2. 2.
    Kim S, Laschi C, Trimmer B. 2013. Trends Biotechnol. 31:287–94
  3. 3.
    Pfeifer R, Lungarella M, Iida F. 2007. Science 318:1088–93
  4. 4.
    Mazzolai B, Mondini A, Del Dottore E, Margheri L, Carpi F et al. 2022. Multifunct. Mater. 5:032001
  5. 5.
    Zaidi S, Maselli M, Laschi C, Cianchetti M. 2021. Curr. Robot. Rep. 2:355–69
  6. 6.
    Pons JL. 2005. Emerging Actuator Technologies: A Micromechatronic Approach Chichester, UK: John Wiley & Sons
  7. 7.
    Polygerinos P, Correll N, Morin SA, Mosadegh B, Onal CD et al. 2017. Adv. Eng. Mater. 19:1700016
  8. 8.
    Acome E, Mitchell SK, Morrissey TG, Emmett MB, Benjamin C et al. 2018. Science 359:61–5
  9. 9.
    Park S-J, Gazzola M, Park KS, Park S, Di Santo V et al. 2016. Science 353:158–62
  10. 10.
    Laschi C, Mazzolai B, Mattoli V, Cianchetti M, Dario P 2009. Bioinspir. Biomim. 4:015006
  11. 11.
    Herzog W. 2018. Biophys. Rev. 10:1187–99
  12. 12.
    Paulsen BD, Fabiano S, Rivnay J. 2021. Annu. Rev. Mater. Res. 51:73–99
  13. 13.
    Shahinpoor M, Bar-Cohen Y, Simpson JO, Smith J. 1998. Smart Mater. Struct. 7:R15
  14. 14.
    Tang S-Y, Tabor C, Kalantar-Zadeh K, Dickey MD. 2021. Annu. Rev. Mater. Res. 51:381–408
  15. 15.
    Lantman CW, MacKnight WJM, Lundberg RD. 1989. Annu. Rev. Mater. Sci. 19:295–317
  16. 16.
    Armand MB. 1986. Annu. Rev. Mater. Sci. 16:245–61
  17. 17.
    Cao Y, Tan YJ, Li S, Lee WW, Guo H et al. 2019. Nat. Electron. 2:75–82
  18. 18.
    Zhao Y, Hua M, Yan Y, Wu S, Alsaid Y, He X. 2022. Annu. Rev. Control Robot. Auton. Syst. 5:515–45
  19. 19.
    Horgan CO, Ogden RW, Saccomandi G. 2004. Proc. R. Soc. Lond. A 460:1737–54
  20. 20.
    Foo CC, Cai S, Koh SJA, Bauer S, Suo Z. 2012. J. Appl. Phys. 111:034102
  21. 21.
    Gu GY, Gupta U, Zhu J, Zhu LM, Zhu X. 2017. IEEE Trans. Robot. 33:1263–71
  22. 22.
    Mooney M. 1940. J. Appl. Phys. 11:582–92
  23. 23.
    Rivlin RS, Saunders DW. 1951. Philos. Trans. R. Soc. Lond. A 243:251–88
  24. 24.
    Boyce MC, Arruda EM. 2000. Rubber Chem. Technol. 73:504–23
  25. 25.
    Destrade M, Dorfmann L, Saccomandi G. 2022. Philos. Trans. R. Soc. A 380:20210332
  26. 26.
    Ogden RW. 1972. Proc. R. Soc. Lond. A 326:565–84
  27. 27.
    Fung YC. 2013. Biomechanics: Mechanical Properties of Living Tissues New York: Springer
  28. 28.
    Marko JF, Siggia ED. 1995. Macromolecules 28:8759–70
  29. 29.
    Lakes RS. 2009. Viscoelastic Materials New York: Cambridge Univ. Press
  30. 30.
    Pineda F, Bottausci F, Icard B, Malaquin L, Fouillet Y. 2015. Microelectron. Eng. 144:27–31
  31. 31.
    Paternò L, Tortora G, Menciassi A. 2018. Mech. Responsive Mater. Soft Robot. 5:783–99
  32. 32.
    Marantan A, Mahadevan L. 2018. Am. J. Phys. 86:86–94
  33. 33.
    Treloar LRG. 1975. The Physics of Rubber Elasticity. Oxford, UK: Oxford Univ. Press
  34. 34.
    Marechal L, Balland P, Lindenroth L, Petrou F, Kontovounisios C, Bello F. 2021. Soft Robot. 8:3284–97
  35. 35.
    Kier WM. 2016. Front. Cell Dev. Biol. 4:10
  36. 36.
    Mengaldo G, Renda F, Brunton SL, Bächer M, Calisti M et al. 2022. Nat. Rev. Phys. 4:595–610
  37. 37.
    Xavier MS, Fleming AJ, Yong YK. 2021. Adv. Intell. Syst. 3:2000187
  38. 38.
    Della Santina C, Duriez C, Rus D. 2021. IEEE Control Syst. Mag. 43:330–65
  39. 39.
    Renda F, Giorelli M, Calisti M, Cianchetti M, Laschi C. 2014. IEEE Trans. Robot. 30:1109–22
  40. 40.
    Chirikjian GS, Burdick JW. 1994. IEEE Trans. Robot. Autom. 10:343–54
  41. 41.
    Lu T, Ma C, Wang T. 2020. Extreme Mech. Lett. 38:100752
  42. 42.
    Zhao Y, Tan YJ, Yang W, Ling S, Yang Z et al. 2021. Adv. Healthc. Mater. 10:2100221
  43. 43.
    Zhao Y, Yang W, Tan YJ, Li S, Zeng X et al. 2019. APL Mater. 7:031508
  44. 44.
    Manghi M, Schlagberger X, Kim Y-W, Netz RR. 2006. Soft Matter 2:653–68
  45. 45.
    Ladd AJ. 1994. J. Fluid Mech. 271:285–309
  46. 46.
    Ladd AJ. 1993. Phys. Rev. Lett. 70:1339
  47. 47.
    Succi S. 2001. The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond Oxford, UK: Oxford Univ. Press
  48. 48.
    Ahlrichs P, Dünweg B. 1998. Int. J. Mod. Phys. B 9:1429–38
  49. 49.
    Groot RD, Warren PB. 1997. J. Chem. Phys. 107:4423–35
  50. 50.
    Hoogerbrugge P, Koelman J. 1992. Europhys. Lett. 19:155
  51. 51.
    Ripoll M, Ernst M, Espanol P. 2001. J. Chem. Phys. 115:7271–84
  52. 52.
    Lamura A, Gompper G, Ihle T, Kroll D. 2001. Europhys. Lett. 56:319
  53. 53.
    Winkler R, Mussawisade K, Ripoll M, Gompper G. 2004. J. Phys. Condens. Matter 16:S3941
  54. 54.
    Cundall PA, Strack OD. 1979. Geotechnique 29:47–65
  55. 55.
    Nase ST, Vargas WL, Abatan AA, McCarthy J. 2001. Powder Technol. 116:214–23
  56. 56.
    Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR. 2010. Annu. Rev. Mater. Res. 40:179–211
  57. 57.
    Tan YJ, Susanto GJ, Anwar Ali HP, Tee BCK. 2021. Adv. Mater. 33:2002800
  58. 58.
    Tan YJ, Wu J, Li H, Tee BC. 2018. ACS Appl. Mater. Interfaces 10:15331–45
  59. 59.
    Sadeghi A, Mondini A, Mazzolai B. 2017. Soft Robot. 4:211–23
/content/journals/10.1146/annurev-conmatphys-032822-041146
Loading
/content/journals/10.1146/annurev-conmatphys-032822-041146
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error