1932

Abstract

High-temperature superconductivity, with transition temperatures up to ≈134 K at ambient pressure, occurs in layered cuprate compounds. The conducting CuO planes, which are universally present, are responsible for the superconductivity but also show a disposition to other competing states including spin and charge order. Charge-density-wave (CDW) order appears to be a universal property of cuprate superconductors. It has been studied via a multitude of probes including X-ray and neutron scattering, nuclear magnetic resonance, scanning probe techniques, electronic transport, and quantum oscillations. Here, we review the microscopic properties of the CDW order. We discuss the nature of the ordered state, that is, its symmetry and microscopic structure. Furthermore, we show how the CDW order is related to quenched disorder, host structure, symmetry breaking perturbations, and magnetic fields. We also describe measurements of dynamic collective charge excitations that are closely related to the quasi-static CDW order. Finally, we highlight some of the debated issues in the field, including the origin of the CDW order, the relationship to spin order, and the nature of the spatial CDW correlations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-032922-094430
2024-03-11
2025-02-19
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/15/1/annurev-conmatphys-032922-094430.html?itemId=/content/journals/10.1146/annurev-conmatphys-032922-094430&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Keimer B, Kivelson SA, Norman MR, Uchida S, Zaanen J. 2015. Nature 518:7538179–86
    [Google Scholar]
  2. 2.
    Timusk T, Statt B. 1999. Rep. Prog. Phys. 62:61–122
    [Google Scholar]
  3. 3.
    Fradkin E, Kivelson SA, Tranquada JM. 2015. Rev. Mod. Phys. 87:457–82
    [Google Scholar]
  4. 4.
    Wilson JA, Di Salvo FJ, Mahajan S. 1975. Advan. Phys. 24:2117–201
    [Google Scholar]
  5. 5.
    Monceau P. 2012. Advan. Phys. 61:4325–581
    [Google Scholar]
  6. 6.
    Johannes MD, Mazin II. 2008. Phys. Rev. B 77:16165135
    [Google Scholar]
  7. 7.
    Ulbrich H, Braden M. 2012. Phys. C: Supercond. 481:31–45
    [Google Scholar]
  8. 8.
    Comin R, Damascelli A. 2016. Annu. Rev. Condens. Matter Phys. 7:369–405
    [Google Scholar]
  9. 9.
    Dai J, Calleja E, Alldredge J, Zhu X, Li L et al. 2014. Phys. Rev. B 89:16165140
    [Google Scholar]
  10. 10.
    Arguello CJ, Chockalingam SP, Rosenthal EP, Zhao L, Gutiérrez C et al. 2014. Phys. Rev. B 89:23235115
    [Google Scholar]
  11. 11.
    Wu T, Mayaffre H, Krämer S, Horvatić M, Berthier C et al. 2015. Nat. Commun. 6:6438
    [Google Scholar]
  12. 12.
    Tranquada JM, Sternlieb BJ, Axe JD, Nakamura Y, Uchida S. 1995. Nature 375:6532561–63
    [Google Scholar]
  13. 13.
    Abbamonte P, Rusydi A, Smadici S, Gu GD, Sawatzky GA, Feng DL. 2005. Nat. Phys. 1:3155–58
    [Google Scholar]
  14. 14.
    Hoffman JE, Hudson EW, Lang KM, Madhavan V, Eisaki H et al. 2002. Science 295:5554466–69
    [Google Scholar]
  15. 15.
    Howald C, Eisaki H, Kaneko N, Greven M, Kapitulnik A. 2003. Phys. Rev. B 67:014533
    [Google Scholar]
  16. 16.
    Doiron-Leyraud N, Proust C, LeBoeuf D, Levallois J, Bonnemaison JB et al. 2007. Nature 447:7144565–68
    [Google Scholar]
  17. 17.
    Millis AJ, Norman MR. 2007. Phys. Rev. B 76:220503 R
    [Google Scholar]
  18. 18.
    Harrison N, Sebastian SE. 2011. Phys. Rev. Lett. 106:22226402
    [Google Scholar]
  19. 19.
    Wu T, Mayaffre H, Krämer S, Horvatić M, Berthier C et al. 2011. Nature 477:7363191–94
    [Google Scholar]
  20. 20.
    Ghiringhelli G, Le Tacon M, Minola M, Blanco-Canosa S, Mazzoli C et al. 2012. Science 337:6096821–25
    [Google Scholar]
  21. 21.
    Chang J, Blackburn E, Holmes AT, Christensen NB, Larsen J et al. 2012. Nat. Phys. 8:12871–76
    [Google Scholar]
  22. 22.
    Singer PM, Hunt AW, Imai T. 2002. Phys. Rev. Lett. 88:4047602
    [Google Scholar]
  23. 23.
    Blanco-Canosa S, Frano A, Schierle E, Porras J, Loew T et al. 2014. Phys. Rev. B 90:5054513
    [Google Scholar]
  24. 24.
    Croft TP, Lester C, Senn MS, Bombardi A, Hayden SM. 2014. Phys. Rev. B 89:22224513
    [Google Scholar]
  25. 25.
    Tranquada JM, Gu GD, Hücker M, Jie Q, Kang HJ et al. 2008. Phys. Rev. B 78:17174529
    [Google Scholar]
  26. 26.
    Tabis W, Yu B, Bialo I, Bluschke M, Kolodziej T et al. 2017. Phys. Rev. B 96:13134510
    [Google Scholar]
  27. 27.
    Lee WS, Zhou KJ, Hepting M, Li J, Nag A et al. 2021. Nat. Phys. 17:53–57
    [Google Scholar]
  28. 28.
    Hamidian MH, Edkins SD, Kim CK, Davis JC, Mackenzie AP et al. 2016. Nat. Phys. 12:2150–56
    [Google Scholar]
  29. 29.
    Chang J, Blackburn E, Ivashko O, Holmes AT, Christensen NB et al. 2016. Nat. Commun. 7:11494
    [Google Scholar]
  30. 30.
    Chen XM, Thampy V, Mazzoli C, Barbour AM, Miao H et al. 2016. Phys. Rev. Lett. 117:16167001
    [Google Scholar]
  31. 31.
    Blackburn E, Chang J, Said AH, Leu BM, Liang R et al. 2013. Phys. Rev. B 88:5054506
    [Google Scholar]
  32. 32.
    Le Tacon M, Bosak A, Souliou SM, Dellea G, Loew T et al. 2014. Nat. Phys. 10:52–58
    [Google Scholar]
  33. 33.
    Arpaia R, Caprara S, Fumagalli R, Vecchi GD, Peng YY et al. 2019. Science 365:6456906–10
    [Google Scholar]
  34. 34.
    Robertson JA, Kivelson SA, Fradkin E, Fang AC, Kapitulnik A. 2006. Phys. Rev. B 74:13134507
    [Google Scholar]
  35. 35.
    Fine BV. 2016. Science 351:6270235–35
    [Google Scholar]
  36. 36.
    Hanaguri T, Lupien C, Kohsaka Y, Lee DH, Azuma M et al. 2004. Nature 430:70031001–5
    [Google Scholar]
  37. 37.
    Mukhopadhyay S, Sharma R, Kim CK, Edkins SD, Hamidian MH et al. 2019. PNAS 116:2713249–54
    [Google Scholar]
  38. 38.
    van Zimmermann M, Vigliante A, Niemöller T, Ichikawa N, Frello T et al. 1998. Europhys. Lett. 41:6629–34
    [Google Scholar]
  39. 39.
    Kim YJ, Gu GD, Gog T, Casa D. 2008. Phys. Rev. B 77:6064520
    [Google Scholar]
  40. 40.
    Sears J, Shen Y, Krogstad MJ, Miao H, Bozin ES et al. 2023. Phys. Rev. B 107:11115125
    [Google Scholar]
  41. 41.
    Achkar AJ, Mao X, McMahon C, Sutarto R, He F et al. 2014. Phys. Rev. Lett. 113:10107002
    [Google Scholar]
  42. 42.
    Caplan Y, Orgad D. 2017. Phys. Rev. Lett. 119:10107002
    [Google Scholar]
  43. 43.
    Gerber S, Jang H, Nojiri H, Matsuzawa S, Yasumura H et al. 2015. Science 350:6263949–52
    [Google Scholar]
  44. 44.
    Kim HH, Souliou SM, Barber ME, Lefrançois E, Minola M et al. 2018. Science 362:64181040–44
    [Google Scholar]
  45. 45.
    Bluschke M, Frano A, Schierle E, Putzky D, Ghorbani F et al. 2018. Nat. Commun. 9:2978
    [Google Scholar]
  46. 46.
    McMillan WL. 1975. Phys. Rev. B 12:41187–96
    [Google Scholar]
  47. 47.
    Pouget JP. 2016. C. R. Phys. 17:3332–56
    [Google Scholar]
  48. 48.
    Vinograd I, Zhou R, Hirata M, Wu T, Mayaffre H et al. 2021. Nat. Commun. 12:3274
    [Google Scholar]
  49. 49.
    Caplan Y, Wachtel G, Orgad D. 2015. Phys. Rev. B 92:22224504
    [Google Scholar]
  50. 50.
    Blackburn E, Chang J, Hucker M, Holmes AT, Christensen NB et al. 2013. Phys. Rev. Lett. 110:13137004
    [Google Scholar]
  51. 51.
    Wu T, Mayaffre H, Krämer S, Horvatić M, Berthier C et al. 2013. Nat. Commun. 4:2113
    [Google Scholar]
  52. 52.
    Grissonnanche G, Cyr-Choinière O, Laliberté F, René de Cotret S, Juneau-Fecteau A et al. 2014. Nat. Commun. 5:3280
    [Google Scholar]
  53. 53.
    Jang H, Lee WS, Nojiri H, Matsuzawa S, Yasumura H et al. 2016. PNAS 113:5114645–50
    [Google Scholar]
  54. 54.
    Chan MK, Harrison N, McDonald RD, Ramshaw BJ, Modic KA et al. 2016. Nat. Commun. 7:12244
    [Google Scholar]
  55. 55.
    McMillan WL. 1976. Phys. Rev. B 14:41496–502
    [Google Scholar]
  56. 56.
    Mesaros A, Fujita K, Edkins SD, Hamidian MH, Eisaki H et al. 2016. PNAS 113:4512661–66
    [Google Scholar]
  57. 57.
    Chen XM, Mazzoli C, Cao Y, Thampy V, Barbour AM et al. 2019. Nat. Commun. 10:1435
    [Google Scholar]
  58. 58.
    Fujita M, Goka H, Yamada K, Tranquada JM, Regnault LP. 2004. Phys. Rev. B 70:10104517
    [Google Scholar]
  59. 59.
    Hücker M, van Zimmermann M, Gu GD, Xu ZJ, Wen JS et al. 2011. Phys. Rev. B 83:10104506
    [Google Scholar]
  60. 60.
    Li Q, Hücker M, Gu GD, Tsvelik AM, Tranquada JM. 2007. Phys. Rev. Lett. 99:067001
    [Google Scholar]
  61. 61.
    Agterberg DF, Davis JCS, Edkins SD, Fradkin E, Van Harlingen DJ et al. 2020. Annu. Rev. Condens. Matter Phys. 11:231–70
    [Google Scholar]
  62. 62.
    Edkins SD, Kostin A, Fujita K, Mackenzie AP, Eisaki H et al. 2019. Science 364:976–80
    [Google Scholar]
  63. 63.
    Christensen NB, Chang J, Larsen J, Fujita M, Oda M et al. 2014. arXiv:1404.3192 [cond-mat.supr-con]
  64. 64.
    Choi J, Wang Q, Jöhr S, Christensen NB, Küspert J et al. 2022. Phys. Rev. Lett. 128:20207002
    [Google Scholar]
  65. 65.
    Forgan EM, Blackburn E, Holmes AT, Briffa AKR, Chang J et al. 2015. Nat. Commun. 6:10064
    [Google Scholar]
  66. 66.
    Campbell BJ, Stokes HT, Tanner DE, Hatch DM. 2006. J. Appl. Crystallogr. 39:4607–14
    [Google Scholar]
  67. 67.
    Momma K, Izumi F. 2011. J. Appl. Crystallogr. 44:61272–76
    [Google Scholar]
  68. 68.
    Fujita K, Hamidian MH, Edkins SD, Kim CK, Kohsaka Y et al. 2014. PNAS 111:30E3026–32
    [Google Scholar]
  69. 69.
    Comin R, Sutarto R, He F, da Silva Neto EH, Chauviere L et al. 2015. Nat. Mater. 14:8796–800
    [Google Scholar]
  70. 70.
    Achkar AJ, He F, Sutarto R, McMahon C, Zwiebler M et al. 2016. Nat. Mater. 15:6616–20
    [Google Scholar]
  71. 71.
    McMahon C, Achkar AJ, da Silva Neto EH, Djianto I, Menard J et al. 2020. Sci. Adv. 6:45eaay0345
    [Google Scholar]
  72. 72.
    Ma Q, Rule KC, Cronkwright ZW, Dragomir M, Mitchell G et al. 2021. Phys. Rev. Res. 3:2023151
    [Google Scholar]
  73. 73.
    Gupta NK, McMahon C, Sutarto R, Shi T, Gong R et al. 2021. PNAS 118:34e2106881118
    [Google Scholar]
  74. 74.
    Lee S, Huang EW, Johnson TA, Guo X, Husain AA et al. 2022. PNAS 119:15e2119429119
    [Google Scholar]
  75. 75.
    Hücker M, Christensen NB, Holmes AT, Blackburn E, Forgan EM et al. 2014. Phys. Rev. B 90:5054514
    [Google Scholar]
  76. 76.
    Dai P, Mook HA, Hunt RD, Dogan F. 2001. Phys. Rev. B 63:5054525
    [Google Scholar]
  77. 77.
    Headings NS, Hayden SM, Kulda J, Babu NH, Cardwell DA. 2011. Phys. Rev. B 84:10104513
    [Google Scholar]
  78. 78.
    Peng YY, Fumagalli R, Ding Y, Minola M, Caprara S et al. 2018. Nat. Mater. 17:8697–702
    [Google Scholar]
  79. 79.
    Enoki M, Fujita M, Nishizaki T, Iikubo S, Singh DK et al. 2013. Phys. Rev. Lett. 110:017004
    [Google Scholar]
  80. 80.
    Wen JJ, Huang H, Lee SJ, Jang H, Knight J et al. 2019. Nat. Commun. 10:3269
    [Google Scholar]
  81. 81.
    Miao H, Fabbris G, Koch RJ, Mazzone DG, Nelson CS et al. 2021. npj Quantum Mater. 6:31
    [Google Scholar]
  82. 82.
    Tam CC, Zhu M, Ayres J, Kummer K, Yakhou-Harris F et al. 2022. Nat. Commun. 13:570
    [Google Scholar]
  83. 83.
    Yamada K, Lee CH, Kurahashi K, Wada J, Wakimoto S et al. 1998. Phys. Rev. B 57:106165–72
    [Google Scholar]
  84. 84.
    Frison R, Küspert J, Wang Q, Ivashko O, Zimmermann Mv et al. 2022. Phys. Rev. B 105:22224113
    [Google Scholar]
  85. 85.
    Jacobsen H, Zaliznyak IA, Savici AT, Winn BL, Chang S et al. 2015. Phys. Rev. B 92:17174525
    [Google Scholar]
  86. 86.
    Thampy V, Dean MPM, Christensen NB, Steinke L, Islam Z et al. 2014. Phys. Rev. B 90:10100510 R
    [Google Scholar]
  87. 87.
    Simutis G, Küspert J, Wang Q, Choi J, Bucher D et al. 2022. Commun. Phys. 5:296
    [Google Scholar]
  88. 88.
    Kohsaka Y, Taylor C, Fujita K, Schmidt A, Lupien C et al. 2007. Science 315:58171380–85
    [Google Scholar]
  89. 89.
    Parker CV, Aynajian P, da Silva Neto EH, Pushp A, Ono S et al. 2010. Nature 468:7324677–80
    [Google Scholar]
  90. 90.
    Bel R, Behnia K, Berger H. 2003. Phys. Rev. Lett. 91:6066602
    [Google Scholar]
  91. 91.
    LeBoeuf D, Doiron-Leyraud N, Vignolle B, Sutherland M, Ramshaw BJ et al. 2011. Phys. Rev. B 83:5054506
    [Google Scholar]
  92. 92.
    Allais A, Chowdhury D, Sachdev S. 2014. Nat. Commun. 5:5771
    [Google Scholar]
  93. 93.
    Putzke C, Benhabib S, Tabis W, Ayres J, Wang Z et al. 2021. Nat. Phys. 17:7826–31
    [Google Scholar]
  94. 94.
    Bangura AF, Rourke PMC, Benseman TM, Matusiak M, Cooper JR et al. 2010. Phys. Rev. B 82:14140501 R
    [Google Scholar]
  95. 95.
    Wasserman A, Springford M. 1996. Advan. Phys. 45:6471–503
    [Google Scholar]
  96. 96.
    Gannot Y, Ramshaw BJ, Kivelson SA. 2019. Phys. Rev. B 100:4045128
    [Google Scholar]
  97. 97.
    Ramshaw BJ, Sebastian SE, McDonald RD, Day J, Tan BS et al. 2015. Science 348:6232317–20
    [Google Scholar]
  98. 98.
    Nakata S, Yang P, Barber ME, Ishida K, Kim HH et al. 2022. npj Quantum Mater. 7:118
    [Google Scholar]
  99. 99.
    Audouard A, Jaudet C, Vignolles D, Liang R, Bonn DA et al. 2009. Phys. Rev. Lett. 103:15157003
    [Google Scholar]
  100. 100.
    Briffa AKR, Blackburn E, Hayden SM, Yelland EA, Long MW, Forgan EM. 2016. Phys. Rev. B 93:9094502
    [Google Scholar]
  101. 101.
    Maharaj AV, Zhang Y, Ramshaw BJ, Kivelson SA. 2016. Phys. Rev. B 93:9094503
    [Google Scholar]
  102. 102.
    Barišić N, Badoux S, Chan MK, Dorow C, Tabis W et al. 2013. Nat. Phys. 9:12761–64
    [Google Scholar]
  103. 103.
    Chan MK, McDonald RD, Ramshaw BJ, Betts JB, Shekhter A et al. 2020. PNAS 117:189782–86
    [Google Scholar]
  104. 104.
    Husain AA, Mitrano M, Rak MS, Rubeck S, Uchoa B et al. 2019. Phys. Rev. X 9:4041062
    [Google Scholar]
  105. 105.
    Nag A, Zhu M, Bejas M, Li J, Robarts HC et al. 2020. Phys. Rev. Lett. 125:25257002
    [Google Scholar]
  106. 106.
    Hepting M, Chaix L, Huang EW, Fumagalli R, Peng YY et al. 2018. Nature 563:374–78
    [Google Scholar]
  107. 107.
    Giuliani G, Vignale G. 2005. Quantum Theory of the Electron Liquid Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  108. 108.
    Huang HY, Singh A, Mou CY, Johnston S, Kemper AF et al. 2021. Phys. Rev. X 11:4041038
    [Google Scholar]
  109. 109.
    Devereaux TP, Shvaika AM, Wu K, Wohlfeld K, Jia CJ et al. 2016. Phys. Rev. X 6:4041019
    [Google Scholar]
  110. 110.
    von Arx K, Wang Q, Mustafi S, Mazzone DG, Horio M et al. 2023. npj Quantum Mater. 8:7
    [Google Scholar]
  111. 111.
    Zhu M, Voneshen DJ, Raymond S, Lipscombe OJ, Tam CC, Hayden SM. 2023. Nat. Phys. 19:99–105
    [Google Scholar]
  112. 112.
    Pintschovius L, Reznik D, Reichardt W, Endoh Y, Hiraka H et al. 2004. Phys. Rev. B 69:214506
    [Google Scholar]
  113. 113.
    Reznik D, Pintschovius L, Ito M, Iikubo S, Sato M et al. 2006. Nature 440:1170–73
    [Google Scholar]
  114. 114.
    Weber F, Rosenkranz S, Castellan JP, Osborn R, Hott R et al. 2011. Phys. Rev. Lett. 107:10107403
    [Google Scholar]
  115. 115.
    Miao H, Ishikawa D, Heid R, Le Tacon M, Fabbris G et al. 2018. Phys. Rev. X 8:011008
    [Google Scholar]
  116. 116.
    He Y, Wu S, Song Y, Lee WS, Said AH et al. 2018. Phys. Rev. B 98:3035102
    [Google Scholar]
  117. 117.
    Arpaia R, Martinelli L, Sala MM, Caprara S, Nag A et al. 2023. Nat. Comm 147198
    [Google Scholar]
  118. 118.
    Zaanen J, Gunnarsson O. 1989. Phys. Rev. B 40:7391–94
    [Google Scholar]
  119. 119.
    Schulz HJ. 1989. J. Phys. France 50:182833–49
    [Google Scholar]
  120. 120.
    Machida K. 1989. Physica C 158:192–96
    [Google Scholar]
  121. 121.
    Löw U, Emery VJ, Fabricius K, Kivelson SA. 1994. Phys. Rev. Lett. 72:121918–21
    [Google Scholar]
  122. 122.
    Fine BV. 2004. Phys. Rev. B 70:224508
    [Google Scholar]
  123. 123.
    Castellani C, Di Castro C, Grilli M. 1995. Phys. Rev. Lett. 75:4650–53
    [Google Scholar]
  124. 124.
    Caprara S, Di Castro C, Seibold G, Grilli M. 2017. Phys. Rev. B 95:22224511
    [Google Scholar]
  125. 125.
    White SR, Scalapino DJ. 1998. Phys. Rev. Lett. 80:1272–75
    [Google Scholar]
  126. 126.
    Corboz P, Rice TM, Troyer M. 2014. Phys. Rev. Lett. 113:046402
    [Google Scholar]
  127. 127.
    Huang EW, Mendl CB, Liu S, Johnston S, Jiang HC et al. 2017. Science 358:63671161–64
    [Google Scholar]
  128. 128.
    Mai P, Karakuzu S, Balduzzi G, Johnston S, Maier TA. 2022. PNAS 119:7e2112806119
    [Google Scholar]
  129. 129.
    Arovas DP, Berg E, Kivelson SA, Raghu S. 2022. Annu. Rev. Condens. Matter Phys. 13:239–74
    [Google Scholar]
  130. 130.
    Fujita M, Hiraka H, Matsuda M, Matsuura M, Tranquada JM et al. 2012. J. Phys. Soc. Jpn. 81:011007
    [Google Scholar]
  131. 131.
    Krien F, Worm P, Chalupa-Gantner P, Toschi A, Held K. 2022. Commun. Phys. 5:336
    [Google Scholar]
  132. 132.
    Tan BS, Harrison N, Zhu Z, Balakirev F, Ramshaw BJ et al. 2015. PNAS 112:319568–72
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-032922-094430
Loading
/content/journals/10.1146/annurev-conmatphys-032922-094430
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error