1932

Abstract

Magnetoelectric multiferroics, which display both ferroelectric and magnetic orders, are appealing because of their rich fundamental physics and promising technological applications. The revival of multiferroics since 2003 led to a comprehensive understanding of the mechanisms that facilitate the coexistence of electric and magnetic orders and conceptually new design strategies for device architectures, which brought us an important step closer to multiferroic-based technology. In the past thirty years, first-principles calculations based on the laws of quantum mechanics played a crucial role in understanding the electronic, magnetic, and structural properties of multiferroics and guided the design of new multiferroics with improved properties. In this review, we provide a comprehensive overview of first-principles approaches to magnetoelectric multiferroics, especially in low-dimensional forms. In particular, we discuss methods to build an effective Hamiltonian from first principles for magnets, ferroelectrics, and multiferroics. The recently developed machine learning potential approach for multiferroics is also outlined. Furthermore, we present the unified model for spin-induced ferroelectricity and methods for computing the linear magnetoelectric coupling tensor. Finally, recent progress in multiferroic systems and the applications of first-principles approaches to these systems are reviewed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-032922-102353
2024-03-11
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/15/1/annurev-conmatphys-032922-102353.html?itemId=/content/journals/10.1146/annurev-conmatphys-032922-102353&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Schmid H. 1994. Ferroelectrics 162:317–38
    [Google Scholar]
  2. 2.
    Wang P, Xiang H. 2014. Phys. Rev. X 4:011035
    [Google Scholar]
  3. 3.
    Nan CW, Bichurin M, Dong S, Viehland D, Srinivasan G. 2008. J. Appl. Phys. 103:31
    [Google Scholar]
  4. 4.
    Dong S, Xiang H, Dagotto E. 2019. Natl. Sci. Rev. 6:4629–41
    [Google Scholar]
  5. 5.
    Eerenstein W, Mathur N, Scott JF. 2006. Nature 442:7104759–65
    [Google Scholar]
  6. 6.
    Cheong SW, Mostovoy M. 2007. Nat. Mater. 6:13–20
    [Google Scholar]
  7. 7.
    Ramesh R, Spaldin NA. 2007. Nat. Mater. 6:21–29
    [Google Scholar]
  8. 8.
    Wang K, Liu JM, Ren Z. 2009. Adv. Phys. 58:4321–448
    [Google Scholar]
  9. 9.
    Fiebig M, Lottermoser T, Meier D, Trassin M. 2016. Nat. Rev. Mater. 1:81–14
    [Google Scholar]
  10. 10.
    Picozzi S, Yamauchi K, Sergienko IA, Sen C, Sanyal B, Dagotto E. 2008. J. Phys.: Condens. Matter 20:43434208
    [Google Scholar]
  11. 11.
    Khomskii D. 2009. Physics 2:20
    [Google Scholar]
  12. 12.
    Wang J, Neaton J, Zheng H, Nagarajan V, Ogale S et al. 2003. Science 299:56131719–22
    [Google Scholar]
  13. 13.
    Van Aken BB, Palstra TT, Filippetti A, Spaldin NA. 2004. Nat. Mater. 3:3164–70
    [Google Scholar]
  14. 14.
    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y. 2003. Nature 426:696255–58
    [Google Scholar]
  15. 15.
    Hill NA. 2000. J. Phys. Chem. B 104:296694–709
    [Google Scholar]
  16. 16.
    Neaton J, Ederer C, Waghmare U, Spaldin N, Rabe K. 2005. Phys. Rev. B 71:014113
    [Google Scholar]
  17. 17.
    Johnston K, Huang X, Neaton JB, Rabe KM. 2005. Phys. Rev. B 71:10100103
    [Google Scholar]
  18. 18.
    Wang C, Guo GC, He L. 2007. Phys. Rev. Lett. 99:17177202
    [Google Scholar]
  19. 19.
    Picozzi S, Yamauchi K, Sanyal B, Sergienko IA, Dagotto E. 2007. Phys. Rev. Lett. 99:22227201
    [Google Scholar]
  20. 20.
    Xiang H, Whangbo MH. 2007. Phys. Rev. Lett. 99:25257203
    [Google Scholar]
  21. 21.
    Xiang H, Wei SH, Whangbo MH, Da Silva JL. 2008. Phys. Rev. Lett. 101:3037209
    [Google Scholar]
  22. 22.
    Malashevich A, Vanderbilt D. 2008. Phys. Rev. Lett. 101:3037210
    [Google Scholar]
  23. 23.
    Duan CG, Jaswal SS, Tsymbal EY. 2006. Phys. Rev. Lett. 97:4047201
    [Google Scholar]
  24. 24.
    Luo W, Xu K, Xiang H. 2017. Phys. Rev. B 96:23235415
    [Google Scholar]
  25. 25.
    Hubbard J. 1964. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 277:1369237–59
    [Google Scholar]
  26. 26.
    Xu C, Feng J, Kawamura M, Yamaji Y, Nahas Y et al. 2020. Phys. Rev. Lett. 124:8087205
    [Google Scholar]
  27. 27.
    Dzyaloshinsky I. 1958. J. Phys. Chem. Solids 4:4241–55
    [Google Scholar]
  28. 28.
    Moriya T. 1960. Phys. Rev. 120:91
    [Google Scholar]
  29. 29.
    Xiang H, Kan E, Whangbo MH, Lee C, Wei SH, Gong X. 2011. Phys. Rev. B 83:17174402
    [Google Scholar]
  30. 30.
    Liu J, Koo HJ, Xiang H, Kremer RK, Whangbo MH. 2014. J. Chem. Phys. 141:12124113
    [Google Scholar]
  31. 31.
    Moriya T, Yosida K. 1953. Prog. Theor. Phys. 9:6663–75
    [Google Scholar]
  32. 32.
    Ye F, Morgan Z, Tian W, Chi S, Wang X et al. 2021. Phys. Rev. B 103:18184413
    [Google Scholar]
  33. 33.
    Li X, Xu C, Liu B, Li X, Bellaiche L, Xiang H. 2023. Phys. Rev. Lett. 131:036701
    [Google Scholar]
  34. 34.
    Ni J, Li X, Amoroso D, He X, Feng J et al. 2021. Phys. Rev. Lett. 127:24247204
    [Google Scholar]
  35. 35.
    Gutzeit M, Kubetzka A, Haldar S, Pralow H, Goerzen MA et al. 2022. Nat. Commun. 13:5764
    [Google Scholar]
  36. 36.
    Paul S, Haldar S, Von Malottki S, Heinze S. 2020. Nat. Commun. 11:4756
    [Google Scholar]
  37. 37.
    Xu C, Li X, Chen P, Zhang Y, Xiang H, Bellaiche L. 2022. Adv. Mater. 34:122107779
    [Google Scholar]
  38. 38.
    Novák P, Chaplygin I, Seifert G, Gemming S, Laskowski R. 2008. Comput. Mater. Sci. 44:79–81
    [Google Scholar]
  39. 39.
    Li X, Yu H, Lou F, Feng J, Whangbo MH, Xiang H. 2021. Molecules 26:4803
    [Google Scholar]
  40. 40.
    Escorihuela-Sayalero C, Diéguez O, Íñiguez J. 2012. Phys. Rev. Lett. 109:24247202
    [Google Scholar]
  41. 41.
    Yang H, Thiaville A, Rohart S, Fert A, Chshiev M. 2015. Phys. Rev. Lett. 115:26267210
    [Google Scholar]
  42. 42.
    Yang H, Liang J, Cui Q. 2023. Nat. Rev. Phys. 5:43–61
    [Google Scholar]
  43. 43.
    Xiang H, Kan E, Wei SH, Whangbo MH, Gong X. 2011. Phys. Rev. B 84:22224429
    [Google Scholar]
  44. 44.
    Xiang H, Lee C, Koo HJ, Gong X, Whangbo MH. 2013. Dalton Trans 42:4823–53
    [Google Scholar]
  45. 45.
    Xu C, Feng J, Prokhorenko S, Nahas Y, Xiang H, Bellaiche L. 2020. Phys. Rev. B 101:6060404
    [Google Scholar]
  46. 46.
    Lu X, Wu X, Xiang H. 2015. Phys. Rev. B 91:10100405
    [Google Scholar]
  47. 47.
    Li J, Feng J, Wang P, Kan E, Xiang H. 2021. Sci. China Phys. Mech. Astron. 64:8286811
    [Google Scholar]
  48. 48.
    Lou F, Li X, Ji J, Yu H, Feng J et al. 2021. J. Chem. Phys. 154:11114103
    [Google Scholar]
  49. 49.
    Singer R, Dietermann F, Fähnle M. 2011. Phys. Rev. Lett. 107:017204
    [Google Scholar]
  50. 50.
    Li XY, Lou F, Gong XG, Xiang H. 2020. New J. Phys. 22:5053036
    [Google Scholar]
  51. 51.
    Liechtenstein AI, Katsnelson M, Antropov V, Gubanov V. 1987. J. Magnet. Magnet. Mater. 67:65–74
    [Google Scholar]
  52. 52.
    Liechtenstein A, Anisimov VI, Zaanen J. 1995. Phys. Rev. B 52:8R5467
    [Google Scholar]
  53. 53.
    Wan X, Yin Q, Savrasov SY. 2006. Phys. Rev. Lett. 97:26266403
    [Google Scholar]
  54. 54.
    Korotin DM, Mazurenko V, Anisimov V, Streltsov S. 2015. Phys. Rev. B 91:22224405
    [Google Scholar]
  55. 55.
    Antropov V, Katsnelson M, Liechtenstein A. 1997. Phys. B: Condens. Matter 237:336–40
    [Google Scholar]
  56. 56.
    Lounis S, Dederichs PH. 2010. Phys. Rev. B 82:18180404
    [Google Scholar]
  57. 57.
    Szilva A, Costa M, Bergman A, Szunyogh L, Nordström L, Eriksson O. 2013. Phys. Rev. Lett. 111:12127204
    [Google Scholar]
  58. 58.
    Solovyev I. 2021. Phys. Rev. B 103:10104428
    [Google Scholar]
  59. 59.
    Andersen OK, Jepsen O. 1984. Phys. Rev. Lett. 53:272571
    [Google Scholar]
  60. 60.
    Rudenko A, Mazurenko V, Anisimov V, Lichtenstein A. 2009. Phys. Rev. B 79:14144418
    [Google Scholar]
  61. 61.
    Katsnelson M, Lichtenstein A. 2000. Phys. Rev. B 61:138906
    [Google Scholar]
  62. 62.
    Katsnelson M, Kvashnin Y, Mazurenko V, Lichtenstein A. 2010. Phys. Rev. B 82:10100403
    [Google Scholar]
  63. 63.
    Solovyev I, Hamada N, Terakura K. 1996. Phys. Rev. Lett. 76:254825
    [Google Scholar]
  64. 64.
    Yavorsky BY, Mertig I. 2006. Phys. Rev. B 74:17174402
    [Google Scholar]
  65. 65.
    He X, Helbig N, Verstraete MJ, Bousquet E. 2021. Comput. Phys. Commun. 264:107938
    [Google Scholar]
  66. 66.
    Kotliar G, Savrasov SY, Haule K, Oudovenko VS, Parcollet O, Marianetti C. 2006. Rev. Mod. Phys. 78:3865
    [Google Scholar]
  67. 67.
    Durhuus FL, Skovhus T, Olsen T. 2023. J. Phys.: Condens. Matter 35:10105802
    [Google Scholar]
  68. 68.
    Blöchl PE. 1994. Phys. Rev. B 50:2417953
    [Google Scholar]
  69. 69.
    King-Smith R, Vanderbilt D. 1993. Phys. Rev. B 47:31651
    [Google Scholar]
  70. 70.
    Resta R. 1994. Rev. Mod. Phys. 66:3899
    [Google Scholar]
  71. 71.
    Berry MV. 1984. Proc. R. Soc. Lond. A Math. Phys. Sci. 392:180245–57
    [Google Scholar]
  72. 72.
    Baroni S, De Gironcoli S, Dal Corso A, Giannozzi P 2001. Rev. Mod. Phys. 73:2515
    [Google Scholar]
  73. 73.
    Gonze X. 1997. Phys. Rev. B 55:1610337
    [Google Scholar]
  74. 74.
    Souza I, Íniguez J, Vanderbilt D. 2002. Phys. Rev. Lett. 89:11117602
    [Google Scholar]
  75. 75.
    Umari P, Pasquarello A. 2002. Phys. Rev. Lett. 89:15157602
    [Google Scholar]
  76. 76.
    Stengel M, Spaldin NA, Vanderbilt D. 2009. Nat. Phys. 5:4304–8
    [Google Scholar]
  77. 77.
    Zhong W, Vanderbilt D, Rabe K. 1995. Phys. Rev. B 52:96301
    [Google Scholar]
  78. 78.
    Wojdeł JC, Hermet P, Ljungberg MP, Ghosez P, Íñiguez J. 2013. J. Phys.: Condens. Matter 25:30305401
    [Google Scholar]
  79. 79.
    Kornev IA, Lisenkov S, Haumont R, Dkhil B, Bellaiche L. 2007. Phys. Rev. Lett. 99:22227602
    [Google Scholar]
  80. 80.
    Wang D, Weerasinghe J, Bellaiche L. 2012. Phys. Rev. Lett. 109:6067203
    [Google Scholar]
  81. 81.
    Agrawal A, Choudhary A. 2016. APL Mater. 4:5053208
    [Google Scholar]
  82. 82.
    Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M et al. 2019. Rev. Mod. Phys. 91:4045002
    [Google Scholar]
  83. 83.
    Pinheiro M, Ge F, Ferré N, Dral PO, Barbatti M. 2021. Chem. Sci. 12:4314396–413
    [Google Scholar]
  84. 84.
    Schleder GR, Padilha AC, Acosta CM, Costa M, Fazzio A. 2019. J. Phys.: Mater. 2:3032001
    [Google Scholar]
  85. 85.
    Joshi CK, Bodnar C, Mathis SV, Cohen T, Liò P. 2023. arXiv:2301.09308
  86. 86.
    Xie T, Grossman JC. 2018. Phys. Rev. Lett. 120:14145301
    [Google Scholar]
  87. 87.
    Batzner S, Musaelian A, Sun L, Geiger M, Mailoa JP et al. 2022. Nat. Commun. 13:2453
    [Google Scholar]
  88. 88.
    Musaelian A, Batzner S, Johansson A, Sun L, Owen CJ et al. 2023. Nat. Commun. 14:579
    [Google Scholar]
  89. 89.
    Eckhoff M, Behler J. 2021. npj Comput. Mater. 7:170
    [Google Scholar]
  90. 90.
    Yu H, Xu C, Li X, Lou F, Bellaiche L et al. 2022. Phys. Rev. B 105:17174422
    [Google Scholar]
  91. 91.
    Yu H, Zhong Y, Ji J, Gong X, Xiang H 2022. arXiv:2211.11403
  92. 92.
    Chapman JB, Ma PW. 2022. Sci. Rep. 12:22451
    [Google Scholar]
  93. 93.
    Domina M, Cobelli M, Sanvito S. 2022. Phys. Rev. B 105:21214439
    [Google Scholar]
  94. 94.
    Egorov A, Subramanyam A, Yuan Z, Drautz R, Hammerschmidt T. 2023. Phys. Rev. Mater. 7:044403
    [Google Scholar]
  95. 95.
    Nikolov S, Wood MA, Cangi A, Maillet JB, Marinica MC et al. 2021. npj Comput. Mater. 7:153
    [Google Scholar]
  96. 96.
    Novikov I, Grabowski B, Körmann F, Shapeev A. 2022. npj Comput. Mater. 8:13
    [Google Scholar]
  97. 97.
    Thompson AP, Swiler LP, Trott CR, Foiles SM, Tucker GJ. 2015. J. Comput. Phys. 285:316–30
    [Google Scholar]
  98. 98.
    Yu H, Zhong Y, Xu C, Gong X, Xiang H. 2022. arXiv:2203.02853
  99. 99.
    Sergienko IA, Dagotto E. 2006. Phys. Rev. B 73:9094434
    [Google Scholar]
  100. 100.
    Mostovoy M. 2006. Phys. Rev. Lett. 96:6067601
    [Google Scholar]
  101. 101.
    Katsura H, Nagaosa N, Balatsky AV. 2005. Phys. Rev. Lett. 95:5057205
    [Google Scholar]
  102. 102.
    Arima T. 2007. J. Phys. Soc. Jpn. 76:7073702
    [Google Scholar]
  103. 103.
    Jia C, Onoda S, Nagaosa N, Han JH. 2006. Phys. Rev. B 74:22224444
    [Google Scholar]
  104. 104.
    Xiang H, Kan E, Zhang Y, Whangbo MH, Gong X. 2011. Phys. Rev. Lett. 107:15157202
    [Google Scholar]
  105. 105.
    Lu X, Whangbo MH, Dong S, Gong X, Xiang H. 2012. Phys. Rev. Lett. 108:18187204
    [Google Scholar]
  106. 106.
    Xiang H, Wang P, Whangbo MH, Gong X. 2013. Phys. Rev. B 88:5054404
    [Google Scholar]
  107. 107.
    Yang JH, Li ZL, Lu X, Whangbo MH, Wei SH et al. 2012. Phys. Rev. Lett. 109:10107203
    [Google Scholar]
  108. 108.
    Dzyaloshinskii IE. 1960. Sov. Phys. JETP 10:628–29
    [Google Scholar]
  109. 109.
    Íniguez J. 2008. Phys. Rev. Lett. 101:11117201
    [Google Scholar]
  110. 110.
    Ye M, Vanderbilt D. 2014. Phys. Rev. B 89:6064301
    [Google Scholar]
  111. 111.
    Bousquet E, Spaldin NA, Delaney KT. 2011. Phys. Rev. Lett. 106:10107202
    [Google Scholar]
  112. 112.
    Xu K, Feng J, Xiang H. 2022. Chinese Phys. B 31:9097505
    [Google Scholar]
  113. 113.
    Malashevich A, Souza I, Coh S, Vanderbilt D. 2010. New J. Phys. 12:5053032
    [Google Scholar]
  114. 114.
    Essin AM, Turner AM, Moore JE, Vanderbilt D. 2010. Phys. Rev. B 81:20205104
    [Google Scholar]
  115. 115.
    Malashevich A, Coh S, Souza I, Vanderbilt D. 2012. Phys. Rev. B 86:9094430
    [Google Scholar]
  116. 116.
    Scaramucci A, Bousquet E, Fechner M, Mostovoy M, Spaldin NA. 2012. Phys. Rev. Lett. 109:19197203
    [Google Scholar]
  117. 117.
    Seifert H, Uebach J. 1981. Z. Anorg. Allg. Chem. 479:832–40
    [Google Scholar]
  118. 118.
    Hillebrecht H, Schmidt P, Rotter H, Thiele G, Zönnchen P et al. 1997. J. Alloys Compd. 246:1–270–79
    [Google Scholar]
  119. 119.
    Ai H, Song X, Qi S, Li W, Zhao M. 2019. Nanoscale 11:31103–10
    [Google Scholar]
  120. 120.
    Xu C, Chen P, Tan H, Yang Y, Xiang H, Bellaiche L. 2020. Phys. Rev. Lett. 125:3037203
    [Google Scholar]
  121. 121.
    Zhong T, Li X, Wu M, Liu JM. 2020. Natl. Sci. Rev. 7:2373–80
    [Google Scholar]
  122. 122.
    Zhang J, Shen X, Wang Y, Ji C, Zhou Y et al. 2020. Phys. Rev. Lett. 125:017601
    [Google Scholar]
  123. 123.
    Ji J, Xu C, Xiang H. 2023. Phys. Rev. Lett. 130:146801
    [Google Scholar]
  124. 124.
    Tan H, Li M, Liu H, Liu Z, Li Y, Duan W. 2019. Phys. Rev. B 99:19195434
    [Google Scholar]
  125. 125.
    Ding N, Chen J, Dong S, Stroppa A. 2020. Phys. Rev. B 102:16165129
    [Google Scholar]
  126. 126.
    Peng J, Liu Y, Lv H, Li Y, Lin Y et al. 2021. Nat. Chem. 13:121235–40
    [Google Scholar]
  127. 127.
    Zhao Y, Liu Q, Zhang F, Jiang X, Gao W, Zhao J. 2022. J. Phys. Chem. Lett. 13:4811346–53
    [Google Scholar]
  128. 128.
    Lu J, Luo W, Feng J, Xiang H. 2018. Nano Lett 18:595–601
    [Google Scholar]
  129. 129.
    Zhang J, Zhou Y, Wang F, Shen X, Wang J, Lu X. 2022. Phys. Rev. Lett. 129:11117603
    [Google Scholar]
  130. 130.
    Shen X, Wang F, Lu X, Zhang J. 2023. Nano Lett 23:2735–41
    [Google Scholar]
  131. 131.
    Ji D, Cai S, Paudel TR, Sun H, Zhang C et al. 2019. Nature 570:775987–90
    [Google Scholar]
  132. 132.
    Li L, Wu M. 2017. ACS Nano 11:66382–88
    [Google Scholar]
  133. 133.
    Lei C, Chittari BL, Nomura K, Banerjee N, Jung J, MacDonald AH. 2021. Nano Lett 21:51948–54
    [Google Scholar]
  134. 134.
    Liu X, Pyatakov AP, Ren W. 2020. Phys. Rev. Lett. 125:24247601
    [Google Scholar]
  135. 135.
    Tong WY, Gong SJ, Wan X, Duan CG. 2016. Nat. Commun. 7:13612
    [Google Scholar]
  136. 136.
    Ju H, Lee Y, Kim KT, Choi IH, Roh CJ et al. 2021. Nano Lett 21:125126–32
    [Google Scholar]
  137. 137.
    Song Q, Occhialini CA, Ergeçen E, Ilyas B, Amoroso D et al. 2022. Nature 602:7898601–5
    [Google Scholar]
  138. 138.
    Kurumaji T, Seki S, Ishiwata S, Murakawa H, Kaneko Y, Tokura Y. 2013. Phys. Rev. B 87:014429
    [Google Scholar]
  139. 139.
    Zhang JJ, Lin L, Zhang Y, Wu M, Yakobson BI, Dong S. 2018. J. Am. Chem. Soc. 140:309768–73
    [Google Scholar]
  140. 140.
    Su Y, Li X, Zhu M, Zhang J, You L, Tsymbal EY. 2020. Nano Lett 21:175–81
    [Google Scholar]
  141. 141.
    Kuindersma S, Sanchez J, Haas C. 1981. Physica B+C 111:2–3231–48
    [Google Scholar]
  142. 142.
    Okubo T, Chung S, Kawamura H. 2012. Phys. Rev. Lett. 108:017206
    [Google Scholar]
  143. 143.
    Amoroso D, Barone P, Picozzi S. 2020. Nat. Commun. 11:5784
    [Google Scholar]
  144. 144.
    Riedl K, Amoroso D, Backes S, Razpopov A, Nguyen TPT et al. 2022. Phys. Rev. B 106:3035156
    [Google Scholar]
  145. 145.
    Ni Xs, Yao DX, Cao K. 2022. arXiv:2209.12392
  146. 146.
    Tokunaga Y, Okuyama D, Kurumaji T, Arima T, Nakao H et al. 2011. Phys. Rev. B 84:6060406
    [Google Scholar]
  147. 147.
    Kurumaji T, Seki S, Ishiwata S, Murakawa H, Tokunaga Y et al. 2011. Phys. Rev. Lett. 106:16167206
    [Google Scholar]
  148. 148.
    Lu Y, Fei R, Lu X, Zhu L, Wang L, Yang L. 2020. ACS Appl. Mater. Interfaces 12:56243–49
    [Google Scholar]
  149. 149.
    Runge E, Gross EK. 1984. Phys. Rev. Lett. 52:12997
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-032922-102353
Loading
/content/journals/10.1146/annurev-conmatphys-032922-102353
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error