1932

Abstract

The thermal Green's function formalism bridging between macroscopic observables and microscopic processes via linear response theory was established in the early 1960s, when I started my research career. I recall stimulating experiences with the help of this technique in exploring transport and thermodynamic properties of Bloch electrons in magnetic fields, especially orbital magnetism and the Hall effect, and this technique is useful for understanding narrow gap systems like Dirac and Weyl electrons, which are of current interest. Recent ongoing challenges on thermoelectricity based on the Kubo–Luttinger formula are briefly introduced; it is an important scientific issue in view of sustainable development goals that awaits contributions from condensed matter physics, where the thermal Green's function is again a powerful tool.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-032922-114143
2024-03-11
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/15/1/annurev-conmatphys-032922-114143.html?itemId=/content/journals/10.1146/annurev-conmatphys-032922-114143&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Anderson PW. 1972. Science 177:393–96
    [Google Scholar]
  2. 2.
    Kubo R. 1957. J. Phys. Soc. Jpn. 19:570–86
    [Google Scholar]
  3. 3.
    Matsubara T. 1955. Prog. Theor. Phys. 14:351–78
    [Google Scholar]
  4. 4.
    Abrikosov AA, Gorkov LP, Dyaloshinsky IE. 1963. Methods of Quantum Field Theory in Statistical Physics New Jersey: Prentice Hall
    [Google Scholar]
  5. 5.
    Hebborn JE, Luttinger JM, Sondheimer EH, Stiles PJ. 1964. J. Phys. Chem. Solids 25:741–49
    [Google Scholar]
  6. 6.
    Luttinger JM, Kohn W. 1955. Phys. Rev. 97:869–83
    [Google Scholar]
  7. 7.
    Fukuyama H, Ebisawa H, Wada Y. 1969. Prog. Theor. Phys. 42:494–511
    [Google Scholar]
  8. 8.
    Fukuyama H. 1969. Prog. Theor. Phys. 42:1284–303
    [Google Scholar]
  9. 9.
    Fukuyama H, Ebisawa H, Tsuzuki T. 1971. Prog. Theor. Phys. 46:1028–41
    [Google Scholar]
  10. 10.
    Fukuyama H. 2007. J. Phys. Soc. Jpn. 76:043711
    [Google Scholar]
  11. 11.
    Tajima N, Kato R, Sugawara S, Nisho Y, Kajita K. 2012. Phys. Rev. B 85:033401
    [Google Scholar]
  12. 12.
    Peierls R. 1933. Z. Phys. 80:763–91
    [Google Scholar]
  13. 13.
    Adams EN II. 1953. Phys. Rev. 89:633–48
    [Google Scholar]
  14. 14.
    Blount EI. 1962. Solid State Physics Vol. 13 F Seitz, D Turnbull 305–73. New York: Academic
    [Google Scholar]
  15. 15.
    Fukuyama H, Kubo R. 1969. J. Phys. Soc. Jpn. 27:604–14
    [Google Scholar]
  16. 16.
    Wolff PA. 1964. J. Phys. Chem. Solid 25:1057–68
    [Google Scholar]
  17. 17.
    Fukuyama H, Kubo R. 1970. J. Phys. Soc. Jpn. 28:570–81
    [Google Scholar]
  18. 18.
    Shoenberg D, Uddin MZ. 1936. Proc. R. Soc. A 156:687–701
    [Google Scholar]
  19. 19.
    Wehrli L. 1968. Phys. Kondens. Mater. 8:87–128
    [Google Scholar]
  20. 20.
    Fukuyama H. 1971. Prog. Theor. Phys. 45:704–29
    [Google Scholar]
  21. 21.
    McClure JW. 1956. Phys. Rev. 104:666–71
    [Google Scholar]
  22. 22.
    Weinstock M. 2022. Carbon Queen: The Remarkable Life of Nanoscience Pioneer Mildred Dresselhaus Cambridge, MA/London: MIT Press
    [Google Scholar]
  23. 23.
    Geballe TH. 2013. Annu. Rev. Condens. Matter Phys. 4:1–21
    [Google Scholar]
  24. 24.
    Ogata M, Fukuyama H. 2015. J. Phys. Soc. Jpn. 84:124708
    [Google Scholar]
  25. 25.
    Gao Y, Yang SA, Niu Q. 2015. Phys. Rev. B 91:214405
    [Google Scholar]
  26. 26.
    Ogata M. 2017. J. Phys. Soc. Jpn. 86:044713
    [Google Scholar]
  27. 27.
    Ozaki S, Ogata M. 2021. Phys. Rev. Res. 3:013058
    [Google Scholar]
  28. 28.
    Fujikawa K, Ono Y, eds. 2014. In Memory of Akira Tonomura: Physicist and Electron Microscopist Singapore: World Sci.
    [Google Scholar]
  29. 29.
    Fuseya Y, Ogata M, Fukuyama H. 2015. J. Phys. Soc. Jpn. 84:012001
    [Google Scholar]
  30. 30.
    Fuseya Y, Ogata M, Fukuyama H. 2012. J. Phys. Soc. Jpn. 81:093704
    [Google Scholar]
  31. 31.
    Maebashi H, Ogata M, Fukuyama H. 2017. J. Phys. Soc. Jpn. 86:083702
    [Google Scholar]
  32. 32.
    Fuseya Y, Zhu Z, Fauque B, Kang W, Lenoir B, Behnia K. 2015. Phys. Rev. Lett. 115:216401
    [Google Scholar]
  33. 33.
    Armitage NP, Mele EJ, Vishwanath A. 2018. Rev. Mod. Phys. 90:015001
    [Google Scholar]
  34. 34.
    Kobayashi A, Suzumura Y, Piechon F, Montambaux. 2011. Phys. Rev. B 84:075450
    [Google Scholar]
  35. 35.
    Anderson PW. 1958. Phys. Rev. 102:1008–13
    [Google Scholar]
  36. 36.
    Mott NF, Davis EA. 1979. Electron Processes in Non-Crystalline Materials Oxford, UK: Oxford Univ. Press. , 2nd ed.. pp. 7–64
    [Google Scholar]
  37. 37.
    Abrahams E, Anderson PW, Licciardello DC, Ramakrishnan TV. 1979. Phys. Rev. Lett. 42:673–76
    [Google Scholar]
  38. 38.
    Rosenbaum TF, Andres K, Thomas GA, Bhatt RN. 1980. Phys. Rev. Lett. 45:1723–26
    [Google Scholar]
  39. 39.
    Gor'kov LP, Larkin AI, Khmel'nitzkii DE. 1979. JETP Lett. 30:248–52
    [Google Scholar]
  40. 40.
    Hikami S, Larkin AI, Nagaoka Y. 1980. Prog. Theor. Phys. 63:707–10
    [Google Scholar]
  41. 41.
    Kawabata A. 1980. J. Phys. Soc. Jpn. 49:628–37
    [Google Scholar]
  42. 42.
    Nagaoka Y, Fukuyama H, eds. 1982. Anderson Localization, Proceedings of the Fourth Taniguchi International Symposium, Sanda-shi, Japan, Nov. 3–8, 1981. Springer Ser. Solid-State Sci Berlin/Heidelberg: Springer-Verlag
    [Google Scholar]
  43. 43.
    Nagaoka Y 1985. Prog. Theor. Phys 84Suppl.)
    [Google Scholar]
  44. 44.
    Paalanen MA, Rosenbaum TF, Thomas GA, Bhatt RN. 1983. Phys. Rev. Lett. 51:1896–99
    [Google Scholar]
  45. 45.
    Fukuyama H. 1985. Electron-Electron Interactions in Disordered Systems AL Efros, M Pollak pp. 155–230 Amsterdam: North-Holland
    [Google Scholar]
  46. 46.
    Maekawa S, Fukuyama H. 1982. J. Phys. Soc. Jpn. 51:1380–85
    [Google Scholar]
  47. 47.
    Graybeal JM, Beasley MR. 1984. Phys. Rev. B 29:4167–69
    [Google Scholar]
  48. 48.
    Ebisawa H, Fukuyama H, Maekawa S. 1985. J. Phys. Soc. Jpn. 54:2257–68
    [Google Scholar]
  49. 49.
    Maekawa S, Ebisawa H, Fukuyama H. 1985. Prog. Theor. Phys. Suppl. 84:154–65
    [Google Scholar]
  50. 50.
    Fukuyama H, Abrahams E. 1983. Phys. Rev. B 27:5976–80
    [Google Scholar]
  51. 51.
    Altshuler BL. 1985. JETP Lett. 41:648–51
    [Google Scholar]
  52. 52.
    Lee PA, Stone AD. 1985. Phys. Rev. Lett. 55:1622–25
    [Google Scholar]
  53. 53.
    Webb RA, Washburn S, Umbach CP, Laibowitz RB. 1985. Phys. Rev. Lett. 54:2696–99
    [Google Scholar]
  54. 54.
    Umbach CP, Van Haesendonck C, Laibowitz RB, Washburn S, Webb RA. 1986. Phys. Rev. Lett. 56:386–89
    [Google Scholar]
  55. 55.
    Stone AD, Imry J. 1986. Phys. Rev. Lett. 56:189–92
    [Google Scholar]
  56. 56.
    Imry Y. 1997. Introduction to Mesoscopic Physics New York/Oxford: Oxford Univ. Press
    [Google Scholar]
  57. 57.
    Al'tshuler BL, Aronov AG, Spivak BZ. 1981. JETP Lett. 33:101–3
    [Google Scholar]
  58. 58.
    Lee PA, Stone D, Fukuyama H. 1987. Phys. Rev. B 35:1039–70
    [Google Scholar]
  59. 59.
    Yoshioka D, Fukuyama H. 1992. J. Phys. Soc. Jpn. 61:2368–81
    [Google Scholar]
  60. 60.
    Mahan GD. 1997. Solid State Phys. 51:81–157
    [Google Scholar]
  61. 61.
    Behnia K. 2015. Fundamentals of Thermoelectricity Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  62. 62.
    Luttinger JM. 1964. Phys. Rev. 135:A1505–14
    [Google Scholar]
  63. 63.
    Zlatić V, Monnier R. 2014. Modern Theory of Thermoelectricity Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  64. 64.
    Ogata M, Fukuyama H. 2019. J. Phys. Soc. Jpn. 88:074703
    [Google Scholar]
  65. 65.
    Sommerfeld A, Bethe H. 1933. Elektronentheorie der Metalle, Vol. 24/2 Handbuch der Physik, pp. 333–622. Berlin/Heidelberg: Springer
    [Google Scholar]
  66. 66.
    Jonson M, Mahan GD. 1990. Phys. Rev. B 42:9350–56
    [Google Scholar]
  67. 67.
    Kontani H. 2003. Phys. Rev. B 67:014408
    [Google Scholar]
  68. 68.
    Ogata M, Fukuyama H. 2017. J. Phys. Soc. Jpn. 86:094703
    [Google Scholar]
  69. 69.
    Yamamoto T, Fukuyama H 2018. J. Phys. Soc. Jpn. 87:024707
    [Google Scholar]
  70. 70.
    Hicks LD, Dresselhaus MS. 1993. Phys. Rev. B 47:16631–34
    [Google Scholar]
  71. 71.
    Matsubara M, Sasaoka K, Yamamoto T, Fukuyama H. 2021. J. Phys. Soc. Jpn. 90:044702
    [Google Scholar]
  72. 72.
    Efros AL, Shklovski BI. 1975. J. Phys. C 8:L49–51
    [Google Scholar]
  73. 73.
    Yamamoto T, Ogata M, Fukuyama H. 2022. J. Phys. Soc. Jpn. 91:044704
    [Google Scholar]
  74. 74.
    Bertheband D, Lebedev OI, Maignan A, Hebert S. 2018. J. Appl. Phys. 124:063905
    [Google Scholar]
  75. 75.
    Gurevich L. 1945. J. Phys. (USSR) 9:477–80
    [Google Scholar]
  76. 76.
    Herring C. 1954. Phys. Rev. 96:1163–87
    [Google Scholar]
  77. 77.
    Geballe TH, Hull GW. 1954. Phys. Rev. 94:1134–40
    [Google Scholar]
  78. 78.
    Sun P, Oeschler N, Johnsen S, Iversen BB, Steglich F. 2010. Dalton Trans. 39:1012–19
    [Google Scholar]
  79. 79.
    Takahashi H, Okazaki R, Ishiwata S, Taniguchi H, Okutani A et al. 2016. Nat. Commun. 7:12732
    [Google Scholar]
  80. 80.
    Baumann K. 1963. Ann. Phys. 23:221–27
    [Google Scholar]
  81. 81.
    Matsuura H, Maebashi H, Ogata M, Fukuyama H. 2019. J. Phys. Soc. Jpn. 88:074601
    [Google Scholar]
  82. 82.
    Lee PA, Rice TM, Anderson PW. 1974. Solid State Commun. 14:703–9
    [Google Scholar]
  83. 83.
    Fukuyama H. 1976. J. Phys. Soc. Jpn. 41:513–20
    [Google Scholar]
  84. 84.
    Fukuyama H, Lee PA. 1978. Phys. Rev. B 17:535–41
    [Google Scholar]
  85. 85.
    Lee PA, Rice TM. 1979. Phys. Rev. B 19:3970–80
    [Google Scholar]
  86. 86.
    Fukuyama H, Ogata M. 2020. Phys. Rev. B 102:205136
    [Google Scholar]
  87. 87.
    Tomonaga S. 1950. Prog. Theor. Phys. 5:544–69
    [Google Scholar]
  88. 88.
    Menyhard N, Solyom J. 1973. J. Low. Temp. Phys. 12:529–45
    [Google Scholar]
  89. 89.
    Luther A, Peschel I. 1974. Phys. Rev. B 9:2911–19
    [Google Scholar]
  90. 90.
    Suzumura Y. 1979. Prog. Theor. Phys. 61:1–10
    [Google Scholar]
  91. 91.
    Fukuyama H, Takayama H. 1985. Electronic Properties of Inorganic Quasi-One-Dimensional Compounds, Part 1: Theoretical P Monceau 41–104. Dordrecht, Holland: Reidel
    [Google Scholar]
  92. 92.
    Hase M, Terasaki I, Uchinokura K. 1993. Phys. Rev. Lett. 70:4059–62
    [Google Scholar]
  93. 93.
    Regnault LP, Renard JP, Dhalenne G, Revcolevschi R. 1995. Europhys. Lett. 32:579–84
    [Google Scholar]
  94. 94.
    Manabe K, Ishimoto H, Koide N, Sasago Y, Uchinokura K. 1998. Phys. Rev. B 58:R575–78
    [Google Scholar]
  95. 95.
    Fukuyama H, Tanimoto T, Saito M. 1996. J. Phys. Soc. Jpn. 65:1182–85
    [Google Scholar]
  96. 96.
    Saito M, Fukuyama H. 1997. J. Phys. Soc. Jpn. 66:3259–71
    [Google Scholar]
  97. 97.
    Bednorz JG, Muller KA. 1986. Z. Phys. B 64:189–93
    [Google Scholar]
  98. 98.
    Uchida S, Takagi H, Kitazawa K, Tanaka S. 1987. Jpn. J. Appl. Phys. 26:L1–2
    [Google Scholar]
  99. 99.
    Jpn. Soc. Promot. Sci. Superconductivity Research in Japan—Kakenhi Bear Fruit with Fundamental Research News Release Aug. 2014.
    [Google Scholar]
  100. 100.
    Anderson PW. 1987. Science 235:1196–98
    [Google Scholar]
  101. 101.
    Zhang C, Rice TM. 1988. Phys. Rev. B 37:3759–61
    [Google Scholar]
  102. 102.
    Ogata M, Fukuyama H. 2008. Rep. Prog. Phys. 71:036501
    [Google Scholar]
  103. 103.
    Kunisada S, Isono S, Kohama Y, Sakai S, Bareille C et al. 2020. Science 369:833–38
    [Google Scholar]
  104. 104.
    Yasuoka H, Imai T, Shimizu T 1989. Proceedings of the IBM Japan International Symposium, Mt. Fuji, Japan, May 21–25, 1989 H Fukuyama, S Maekawa, AP Malozemoff 254–61. Berlin/Heidelberg: Springer
    [Google Scholar]
  105. 105.
    Holland MG. 1963. Phys. Rev. 132:2461–71
    [Google Scholar]
  106. 106.
    Shimizu S, Shiogai J, Takenori N, Sakai S, Ikeda H et al. 2019. Nat. Commun. 10:825
    [Google Scholar]
  107. 107.
    Elem. Strategy Initiat. Advis. Counc. 2019. Report of the 1st Element Strategy Initiative Advisory Council (ESIAC). Executive Summary ESIAC Yokohama, Japan: https://elements-strategy.jp/uploads/Report-of-ESIAC.pdf
    [Google Scholar]
  108. 108.
    Seo H, Hotta C, Fukuyama H. 2004. Chem. Rev. 104:5005–36
    [Google Scholar]
  109. 109.
    Fratini S, Nikolka M, Salleo A, Schweicher G, Sirringhaus H. 2020. Nat. Mater. 19:491–502
    [Google Scholar]
  110. 110.
    Nobel Found. 2005. Philip W. Anderson—biographical. NobelPrize.org. Nobel Prize Outreach AB. https://www.nobelprize.org/prizes/physics/1977/anderson/biographical/
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-032922-114143
Loading
/content/journals/10.1146/annurev-conmatphys-032922-114143
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error