1932

Abstract

The thermal Green's function formalism bridging between macroscopic observables and microscopic processes via linear response theory was established in the early 1960s, when I started my research career. I recall stimulating experiences with the help of this technique in exploring transport and thermodynamic properties of Bloch electrons in magnetic fields, especially orbital magnetism and the Hall effect, and this technique is useful for understanding narrow gap systems like Dirac and Weyl electrons, which are of current interest. Recent ongoing challenges on thermoelectricity based on the Kubo–Luttinger formula are briefly introduced; it is an important scientific issue in view of sustainable development goals that awaits contributions from condensed matter physics, where the thermal Green's function is again a powerful tool.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-032922-114143
2024-03-11
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/15/1/annurev-conmatphys-032922-114143.html?itemId=/content/journals/10.1146/annurev-conmatphys-032922-114143&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Anderson PW. 1972. Science 177:393–96
  2. 2.
    Kubo R. 1957. J. Phys. Soc. Jpn. 19:570–86
  3. 3.
    Matsubara T. 1955. Prog. Theor. Phys. 14:351–78
  4. 4.
    Abrikosov AA, Gorkov LP, Dyaloshinsky IE. 1963. Methods of Quantum Field Theory in Statistical Physics New Jersey: Prentice Hall
  5. 5.
    Hebborn JE, Luttinger JM, Sondheimer EH, Stiles PJ. 1964. J. Phys. Chem. Solids 25:741–49
  6. 6.
    Luttinger JM, Kohn W. 1955. Phys. Rev. 97:869–83
  7. 7.
    Fukuyama H, Ebisawa H, Wada Y. 1969. Prog. Theor. Phys. 42:494–511
  8. 8.
    Fukuyama H. 1969. Prog. Theor. Phys. 42:1284–303
  9. 9.
    Fukuyama H, Ebisawa H, Tsuzuki T. 1971. Prog. Theor. Phys. 46:1028–41
  10. 10.
    Fukuyama H. 2007. J. Phys. Soc. Jpn. 76:043711
  11. 11.
    Tajima N, Kato R, Sugawara S, Nisho Y, Kajita K. 2012. Phys. Rev. B 85:033401
  12. 12.
    Peierls R. 1933. Z. Phys. 80:763–91
  13. 13.
    Adams EN II. 1953. Phys. Rev. 89:633–48
  14. 14.
    Blount EI. 1962. Solid State Physics Vol. 13 F Seitz, D Turnbull 305–73. New York: Academic
  15. 15.
    Fukuyama H, Kubo R. 1969. J. Phys. Soc. Jpn. 27:604–14
  16. 16.
    Wolff PA. 1964. J. Phys. Chem. Solid 25:1057–68
  17. 17.
    Fukuyama H, Kubo R. 1970. J. Phys. Soc. Jpn. 28:570–81
  18. 18.
    Shoenberg D, Uddin MZ. 1936. Proc. R. Soc. A 156:687–701
  19. 19.
    Wehrli L. 1968. Phys. Kondens. Mater. 8:87–128
  20. 20.
    Fukuyama H. 1971. Prog. Theor. Phys. 45:704–29
  21. 21.
    McClure JW. 1956. Phys. Rev. 104:666–71
  22. 22.
    Weinstock M. 2022. Carbon Queen: The Remarkable Life of Nanoscience Pioneer Mildred Dresselhaus Cambridge, MA/London: MIT Press
  23. 23.
    Geballe TH. 2013. Annu. Rev. Condens. Matter Phys. 4:1–21
  24. 24.
    Ogata M, Fukuyama H. 2015. J. Phys. Soc. Jpn. 84:124708
  25. 25.
    Gao Y, Yang SA, Niu Q. 2015. Phys. Rev. B 91:214405
  26. 26.
    Ogata M. 2017. J. Phys. Soc. Jpn. 86:044713
  27. 27.
    Ozaki S, Ogata M. 2021. Phys. Rev. Res. 3:013058
  28. 28.
    Fujikawa K, Ono Y, eds. 2014. In Memory of Akira Tonomura: Physicist and Electron Microscopist Singapore: World Sci.
  29. 29.
    Fuseya Y, Ogata M, Fukuyama H. 2015. J. Phys. Soc. Jpn. 84:012001
  30. 30.
    Fuseya Y, Ogata M, Fukuyama H. 2012. J. Phys. Soc. Jpn. 81:093704
  31. 31.
    Maebashi H, Ogata M, Fukuyama H. 2017. J. Phys. Soc. Jpn. 86:083702
  32. 32.
    Fuseya Y, Zhu Z, Fauque B, Kang W, Lenoir B, Behnia K. 2015. Phys. Rev. Lett. 115:216401
  33. 33.
    Armitage NP, Mele EJ, Vishwanath A. 2018. Rev. Mod. Phys. 90:015001
  34. 34.
    Kobayashi A, Suzumura Y, Piechon F, Montambaux. 2011. Phys. Rev. B 84:075450
  35. 35.
    Anderson PW. 1958. Phys. Rev. 102:1008–13
  36. 36.
    Mott NF, Davis EA. 1979. Electron Processes in Non-Crystalline Materials Oxford, UK: Oxford Univ. Press. , 2nd ed.. pp. 7–64
  37. 37.
    Abrahams E, Anderson PW, Licciardello DC, Ramakrishnan TV. 1979. Phys. Rev. Lett. 42:673–76
  38. 38.
    Rosenbaum TF, Andres K, Thomas GA, Bhatt RN. 1980. Phys. Rev. Lett. 45:1723–26
  39. 39.
    Gor'kov LP, Larkin AI, Khmel'nitzkii DE. 1979. JETP Lett. 30:248–52
  40. 40.
    Hikami S, Larkin AI, Nagaoka Y. 1980. Prog. Theor. Phys. 63:707–10
  41. 41.
    Kawabata A. 1980. J. Phys. Soc. Jpn. 49:628–37
  42. 42.
    Nagaoka Y, Fukuyama H, eds. 1982. Anderson Localization, Proceedings of the Fourth Taniguchi International Symposium, Sanda-shi, Japan, Nov. 3–8, 1981. Springer Ser. Solid-State Sci Berlin/Heidelberg: Springer-Verlag
    [Google Scholar]
  43. 43.
    Nagaoka Y 1985. Prog. Theor. Phys 84Suppl.)
  44. 44.
    Paalanen MA, Rosenbaum TF, Thomas GA, Bhatt RN. 1983. Phys. Rev. Lett. 51:1896–99
  45. 45.
    Fukuyama H. 1985. Electron-Electron Interactions in Disordered Systems AL Efros, M Pollak pp. 155–230 Amsterdam: North-Holland
  46. 46.
    Maekawa S, Fukuyama H. 1982. J. Phys. Soc. Jpn. 51:1380–85
  47. 47.
    Graybeal JM, Beasley MR. 1984. Phys. Rev. B 29:4167–69
  48. 48.
    Ebisawa H, Fukuyama H, Maekawa S. 1985. J. Phys. Soc. Jpn. 54:2257–68
  49. 49.
    Maekawa S, Ebisawa H, Fukuyama H. 1985. Prog. Theor. Phys. Suppl. 84:154–65
  50. 50.
    Fukuyama H, Abrahams E. 1983. Phys. Rev. B 27:5976–80
  51. 51.
    Altshuler BL. 1985. JETP Lett. 41:648–51
    [Google Scholar]
  52. 52.
    Lee PA, Stone AD. 1985. Phys. Rev. Lett. 55:1622–25
  53. 53.
    Webb RA, Washburn S, Umbach CP, Laibowitz RB. 1985. Phys. Rev. Lett. 54:2696–99
  54. 54.
    Umbach CP, Van Haesendonck C, Laibowitz RB, Washburn S, Webb RA. 1986. Phys. Rev. Lett. 56:386–89
  55. 55.
    Stone AD, Imry J. 1986. Phys. Rev. Lett. 56:189–92
  56. 56.
    Imry Y. 1997. Introduction to Mesoscopic Physics New York/Oxford: Oxford Univ. Press
  57. 57.
    Al'tshuler BL, Aronov AG, Spivak BZ. 1981. JETP Lett. 33:101–3
    [Google Scholar]
  58. 58.
    Lee PA, Stone D, Fukuyama H. 1987. Phys. Rev. B 35:1039–70
  59. 59.
    Yoshioka D, Fukuyama H. 1992. J. Phys. Soc. Jpn. 61:2368–81
  60. 60.
    Mahan GD. 1997. Solid State Phys. 51:81–157
  61. 61.
    Behnia K. 2015. Fundamentals of Thermoelectricity Oxford, UK: Oxford Univ. Press
  62. 62.
    Luttinger JM. 1964. Phys. Rev. 135:A1505–14
  63. 63.
    Zlatić V, Monnier R. 2014. Modern Theory of Thermoelectricity Oxford, UK: Oxford Univ. Press
  64. 64.
    Ogata M, Fukuyama H. 2019. J. Phys. Soc. Jpn. 88:074703
  65. 65.
    Sommerfeld A, Bethe H. 1933. Elektronentheorie der Metalle, Vol. 24/2 Handbuch der Physik, pp. 333–622. Berlin/Heidelberg: Springer
  66. 66.
    Jonson M, Mahan GD. 1990. Phys. Rev. B 42:9350–56
  67. 67.
    Kontani H. 2003. Phys. Rev. B 67:014408
  68. 68.
    Ogata M, Fukuyama H. 2017. J. Phys. Soc. Jpn. 86:094703
  69. 69.
    Yamamoto T, Fukuyama H 2018. J. Phys. Soc. Jpn. 87:024707
  70. 70.
    Hicks LD, Dresselhaus MS. 1993. Phys. Rev. B 47:16631–34
  71. 71.
    Matsubara M, Sasaoka K, Yamamoto T, Fukuyama H. 2021. J. Phys. Soc. Jpn. 90:044702
  72. 72.
    Efros AL, Shklovski BI. 1975. J. Phys. C 8:L49–51
  73. 73.
    Yamamoto T, Ogata M, Fukuyama H. 2022. J. Phys. Soc. Jpn. 91:044704
  74. 74.
    Bertheband D, Lebedev OI, Maignan A, Hebert S. 2018. J. Appl. Phys. 124:063905
  75. 75.
    Gurevich L. 1945. J. Phys. (USSR) 9:477–80
  76. 76.
    Herring C. 1954. Phys. Rev. 96:1163–87
  77. 77.
    Geballe TH, Hull GW. 1954. Phys. Rev. 94:1134–40
  78. 78.
    Sun P, Oeschler N, Johnsen S, Iversen BB, Steglich F. 2010. Dalton Trans. 39:1012–19
    [Google Scholar]
  79. 79.
    Takahashi H, Okazaki R, Ishiwata S, Taniguchi H, Okutani A et al. 2016. Nat. Commun. 7:12732
  80. 80.
    Baumann K. 1963. Ann. Phys. 23:221–27
  81. 81.
    Matsuura H, Maebashi H, Ogata M, Fukuyama H. 2019. J. Phys. Soc. Jpn. 88:074601
  82. 82.
    Lee PA, Rice TM, Anderson PW. 1974. Solid State Commun. 14:703–9
    [Google Scholar]
  83. 83.
    Fukuyama H. 1976. J. Phys. Soc. Jpn. 41:513–20
  84. 84.
    Fukuyama H, Lee PA. 1978. Phys. Rev. B 17:535–41
  85. 85.
    Lee PA, Rice TM. 1979. Phys. Rev. B 19:3970–80
  86. 86.
    Fukuyama H, Ogata M. 2020. Phys. Rev. B 102:205136
  87. 87.
    Tomonaga S. 1950. Prog. Theor. Phys. 5:544–69
  88. 88.
    Menyhard N, Solyom J. 1973. J. Low. Temp. Phys. 12:529–45
  89. 89.
    Luther A, Peschel I. 1974. Phys. Rev. B 9:2911–19
  90. 90.
    Suzumura Y. 1979. Prog. Theor. Phys. 61:1–10
  91. 91.
    Fukuyama H, Takayama H. 1985. Electronic Properties of Inorganic Quasi-One-Dimensional Compounds, Part 1: Theoretical P Monceau 41–104. Dordrecht, Holland: Reidel
    [Google Scholar]
  92. 92.
    Hase M, Terasaki I, Uchinokura K. 1993. Phys. Rev. Lett. 70:4059–62
  93. 93.
    Regnault LP, Renard JP, Dhalenne G, Revcolevschi R. 1995. Europhys. Lett. 32:579–84
  94. 94.
    Manabe K, Ishimoto H, Koide N, Sasago Y, Uchinokura K. 1998. Phys. Rev. B 58:R575–78
  95. 95.
    Fukuyama H, Tanimoto T, Saito M. 1996. J. Phys. Soc. Jpn. 65:1182–85
  96. 96.
    Saito M, Fukuyama H. 1997. J. Phys. Soc. Jpn. 66:3259–71
  97. 97.
    Bednorz JG, Muller KA. 1986. Z. Phys. B 64:189–93
  98. 98.
    Uchida S, Takagi H, Kitazawa K, Tanaka S. 1987. Jpn. J. Appl. Phys. 26:L1–2
  99. 99.
    Jpn. Soc. Promot. Sci. Superconductivity Research in Japan—Kakenhi Bear Fruit with Fundamental Research News Release Aug. 2014.
  100. 100.
    Anderson PW. 1987. Science 235:1196–98
  101. 101.
    Zhang C, Rice TM. 1988. Phys. Rev. B 37:3759–61
  102. 102.
    Ogata M, Fukuyama H. 2008. Rep. Prog. Phys. 71:036501
  103. 103.
    Kunisada S, Isono S, Kohama Y, Sakai S, Bareille C et al. 2020. Science 369:833–38
  104. 104.
    Yasuoka H, Imai T, Shimizu T 1989. Proceedings of the IBM Japan International Symposium, Mt. Fuji, Japan, May 21–25, 1989 H Fukuyama, S Maekawa, AP Malozemoff 254–61. Berlin/Heidelberg: Springer
  105. 105.
    Holland MG. 1963. Phys. Rev. 132:2461–71
  106. 106.
    Shimizu S, Shiogai J, Takenori N, Sakai S, Ikeda H et al. 2019. Nat. Commun. 10:825
  107. 107.
    Elem. Strategy Initiat. Advis. Counc. 2019. Report of the 1st Element Strategy Initiative Advisory Council (ESIAC). Executive Summary ESIAC Yokohama, Japan: https://elements-strategy.jp/uploads/Report-of-ESIAC.pdf
  108. 108.
    Seo H, Hotta C, Fukuyama H. 2004. Chem. Rev. 104:5005–36
  109. 109.
    Fratini S, Nikolka M, Salleo A, Schweicher G, Sirringhaus H. 2020. Nat. Mater. 19:491–502
  110. 110.
    Nobel Found. 2005. Philip W. Anderson—biographical. NobelPrize.org. Nobel Prize Outreach AB. https://www.nobelprize.org/prizes/physics/1977/anderson/biographical/
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-032922-114143
Loading
/content/journals/10.1146/annurev-conmatphys-032922-114143
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error