1932

Abstract

We review aspects of the evolution from Bardeen–Cooper–Schrieffer (BCS) to Bose–Einstein condensation (BEC) in two dimensions, which have now become relevant in systems with low densities, such as gated superconductors LiZrNCl, magic-angle twisted trilayer graphene, FeSe, FeSeS, and ultracold Fermi superfluids. We emphasize the important role played by chemical potentials in determining crossovers or topological quantum phase transitions during the BCS–BEC evolution in one-band and two-band superfluids and superconductors. We highlight that crossovers from BCS to BEC occur for pairing in nonnodal -wave channels, whereas topological quantum phase transitions, in which the order parameter symmetry does not change, arise for pairing in any nodal higher angular momentum channels, such as -wave. We conclude by discussing a few open questions regarding the BCS-to-BEC evolution in 2D, including modulus fluctuations of the order parameter, tighter upper bounds on critical temperatures, and the exploration of lattice effects in two-band superconductors and superfluids.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-032922-115341
2024-03-11
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/15/1/annurev-conmatphys-032922-115341.html?itemId=/content/journals/10.1146/annurev-conmatphys-032922-115341&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Nakagawa Y, Kasahara Y, Nomoto T, Arita R, Nojima T, Iwasa Y. 2021. Science 372:190–95
  2. 2.
    Heyl M, Adachi K, Itahashi YM, Nakagawa Y, Kasahara Y et al. 2022. Nat. Commun. 13:6986
  3. 3.
    Kim H, Choi Y, Lewandowski C, Thomson A, Zhang Y et al. 2022. Nature 606:7914494–500
  4. 4.
    Park JM, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P. 2021. Nature 590:249–55
  5. 5.
    Hao Z, Zimmerman AM, Ledwith P, Khalaf E, Najafabai DH et al. 2021. Science 371:65341133–38
  6. 6.
    Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T et al. 2014. PNAS 111:4616309–13
  7. 7.
    Hanaguri T, Kasahara S, Böker J, Eremin I, Shibauchi T, Matsuda Y. 2019. Phys. Rev. Lett. 122:077001
  8. 8.
    Hashimoto T, Ota Y, Tsuzuki A, Nagashima T, Fukushima A et al. 2020. Sci. Adv. 6:eabb9052
  9. 9.
    Mizukami Y, Haze M, Tanaka O, Matsuura K, Sano D et al. 2023. Commun. Phys. 6:183
  10. 10.
    Sobirey L, Luick N, Bohlen M, Biss H, Moritz H, Lompe T. 2021. Science 372:6544844–46
  11. 11.
    Sobirey L, Biss H, Luick N, Bohlen M, Moritz H, Lompe T. 2022. Phys. Rev. Lett. 129:8083601
  12. 12.
    Bardeen J, Cooper LN, Schrieffer JR. 1957. Phys. Rev. 108:51175–204
  13. 13.
    Schafroth MR, Butler ST, Blatt JM. 1957. Helv. Phys. Acta 30:93–134
  14. 14.
    Blatt JM. 1964. Theory of Superconductivity New York: Academic
  15. 15.
    Leggett AJ. 1980. Modern Trends in the Theory of Condensed Matter, Proc. XVI Karpacz Winter School of Theoretical Physics A Pekalski, JA Przystawa 13–27 Berlin: Springer-Verlag
  16. 16.
    Leggett AJ. 1980. J. Phys. Colloq. 41:C719–26
  17. 17.
    Nozières P, Schmitt-Rink S. 1985. J. Low Temp. Phys. 59:3195–211
  18. 18.
    Sá de Melo CAR, Randeria M, Engelbrecht JR. 1993. Phys. Rev. Lett. 71:193202–5
  19. 19.
    Engelbrecht JR, Randeria M, Sá de Melo CAR. 1997. Phys. Rev. B 55:2215153–56
  20. 20.
    Zwierlein MW, Stan CA, Schunck CH, Raupach SMF, Gupta S et al. 2003. Phys. Rev. Lett. 91:25250401
  21. 21.
    Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S et al. 2003. Science 302:56532101–3
  22. 22.
    Strecker KE, Partridge GB, Hulet RG. 2003. Phys. Rev. Lett. 91:8080406
  23. 23.
    Kinast J, Hemmer SL, Gehm ME, Turlapov A, Thomas JE. 2004. Phys. Rev. Lett. 92:150402
  24. 24.
    Bourdel T, Khaykovich L, Cubizolles J, Zhang J, Chevy F et al. 2004. Phys. Rev. Lett. 93:050401
  25. 25.
    Zwierlein MW, Abo-Shaeer JR, Schirotzek A, Schunck CH, Ketterle W. 2005. Nature 435:70451047–51
  26. 26.
    Greiner M, Regal CA, Jin DS. 2003. Nature 426:6966537–40
  27. 27.
    Regal CA, Greiner M, Jin DS. 2004. Phys. Rev. Lett. 92:4040403
  28. 28.
    Feshbach H. 1958. Ann. Phys. 5:4357–90
  29. 29.
    Fano U. 1961. Phys. Rev. 124:61866–78
  30. 30.
    Regal CA, Ticknor C, Bohn JL, Jin DS. 2003. Phys. Rev. Lett. 90:5053201
  31. 31.
    Gaebler JP, Stewart JT, Bohn JL, Jin DS. 2007. Phys. Rev. Lett. 98:20200403
  32. 32.
    Botelho SS, Sá de Melo CAR. 2006. Phys. Rev. Lett. 96:040404
  33. 33.
    Feld M, Fröhlich B, Vogt E, Koschorreck M, Köhl M. 2011. Nature 480:75–78
  34. 34.
    Bertaina G, Giorgini S. 2011. Phys. Rev. Lett. 106:110403
  35. 35.
    Fenech K, Dyke P, Peppler T, Lingham M, Hoinka S et al. 2016. Phys. Rev. Lett. 116:045302
  36. 36.
    Iskin M, Sá de Melo CAR. 2009. Phys. Rev. Lett. 103:165301
  37. 37.
    Dyke P, Kuhnle ED, Whitlock S, Hu H, Mark M et al. 2011. Phys. Rev. Lett. 106:105304
  38. 38.
    Sommer AT, Cheuk LW, Ku MJH, Bakr WS, Zwierlein MW. 2011. Phys. Rev. Lett. 108:045302
  39. 39.
    Ries M, Wenz A, Zürn G, Bayha L, Boettcher I et al. 2011. Phys. Rev. Lett. 114:230401
  40. 40.
    Boettcher I, Bayha L, Kedar D, Murthy P, Neidig M et al. 2011. Phys. Rev. Lett. 116:045303
  41. 41.
    Baksmaty LO, Lu H, Bolech CJ, Pu H. 2011. New J. Phys. 13:055014
  42. 42.
    Imambekov A, Bolech CJ, Lukin M, Demler E. 2006. Phys. Rev. A 74:053626
  43. 43.
    Mukherjee B, Yan Z, Patel PB, Hadzibabic Z, Yefsah T et al. 2017. Phys. Rev. Lett. 118:12123401
  44. 44.
    Hueck K, Luick N, Sobirey L, Siegl J, Lompe T, Moritz H. 2018. Phys. Rev. Lett. 120:6060402
  45. 45.
    Baird L, Wang X, Roof S, Thomas JE. 2019. Phys. Rev. Lett. 123:16160402
  46. 46.
    Navon N, Smith RP, Hadzibabic Z. 2021. Nat. Phys. 17:1334–41
  47. 47.
    Schumacher GL, Mäkinen JT, Ji Y, Assumpção GG, Chen J et al. 2023. arxiv:2301.02237
  48. 48.
    Botelho SS, Sá de Melo CAR. 2005. Phys. Rev. B 71:134507
  49. 49.
    Iskin M, Sá de Melo CAR. 2005. Phys. Rev. B 72:22224513
  50. 50.
    Petrov DS, Baranov MA, Shlyapnikov GV. 2003. Phys. Rev. A 67:031601(R)
  51. 51.
    Bohlen M, Sobirey L, Luick N, Biss H, Enss T et al. 2020. Phys. Rev. Lett. 124:24240403
  52. 52.
    Sá de Melo CAR. 2008. Phys. Today 61:1045–51
  53. 53.
    Duncan RD, Sá de Melo CAR. 2000. Phys. Rev. B 62:149675
  54. 54.
    Deleted in proof
  55. 55.
    Borkowski LS, Sá de Melo CAR. 2001. Acta Phys. Pol. 99:6691–98
  56. 56.
    Botelho SS. 2005. BCS-to-BEC quantum phase transition in high-Tc superconductors and fermionic atomic gases: A functional integral approach PhD Thesis Georgia Institute of Technology Atlanta:
  57. 57.
    Petrov DS, Shlyapnikov GV. 2001. Phys. Rev. A 64:012706
  58. 58.
    Berezinskii V. 1971. Sov. Phys. JETP 32:3493–500
  59. 59.
    Kosterlitz JM, Thouless DJ. 1972. J. Phys. C: Solid State Phys. 5:11L124–26
  60. 60.
    Nelson DR, Kosterlitz JM. 1977. Phys. Rev. Lett. 39:191201–5
  61. 61.
    Devreese JPA, Tempere J, Sá de Melo CAR. 2014. Phys. Rev. Lett. 113:16165304
  62. 62.
    Devreese JPA, Tempere J, Sá de Melo CAR. 2015. Phys. Rev. A 92:4043618
  63. 63.
    Fisher DS, Hohenberg PC. 1988. Phys. Rev. B 37:104936–43
  64. 64.
    Perali A, Pieri P, Strinati GC. 2004. Phys. Rev. Lett. 93:10100404
  65. 65.
    Bulgac A. 2007. Phys. Rev. A 76:040502(R)
  66. 66.
    Zwierlein MW, Schunck CH, Schirotzek A, Ketterle W. 2006. Nature 442:54–58
  67. 67.
    Zhou Q, Ho TL. 2011. Phys. Rev. Lett. 106:225301
  68. 68.
    Köhl M. 2022. Machine Learning Based Detection of Phase Transitions. https://www.pi.uni-bonn.de/koehl/en/research/humphry
  69. 69.
    Combescot R, Kagan MY, Stringari S. 2006. Phys. Rev. A 74:4042717
  70. 70.
    Kurkjian H, Castin Y, Sinatra A. 2016. Phys. Rev. A 93:013623
  71. 71.
    Van Loon S, Sá de Melo CAR. 2023. Phys. Rev. Lett. 131:113001
  72. 72.
    Lifshitz IM. 1960. Sov. Phys. JETP 11:1130–35
  73. 73.
    Randeria M, Duan J, Shien L. 1990. Phys. Rev. B 41:19327–43
  74. 74.
    Read N, Green D. 2000. Phys. Rev. B 61:10267
  75. 75.
    Cao G, He L, Huang XG. 2017. Phys. Rev. A 96:6063618
  76. 76.
    Harrison N, Chan MK. 2022. Phys. Rev. Lett. 129:017001
  77. 77.
    Sous J, He Y, Kivelson SA. 2023. npj Quantum Mater 8:25
  78. 78.
    Kayyalha M, Xiao D, Zhang R, Shin J, Jiang J et al. 2020. Science 367:647364–67
  79. 79.
    Botelho SS, Sá de Melo CAR. 2004. arxiv:cond-mat/0409357
  80. 80.
    Venu V, Xu P, Mamaev M, Corapi F, Bilitewski T et al. 2023. Nature 613:7943262–67
  81. 81.
    Zwierlein MW, Schirotzek A, Schunck CH, Ketterle W. 2006. Science 311:5760492–96
  82. 82.
    Liao Ya, Rittner ASC, Paprotta T, Li W, Partridge GB et al. 2006. Science 311:5760492–96
  83. 83.
    Sá de Melo CAR. 2014. Multi-Condensates Superconductivity (Erice Lectures) Rome: Superstripes. (Abstr.)
  84. 84.
    Shi T, Zhang W, Sá de Melo CAR. 2022. EPL 139:36003
  85. 85.
    Iskin M, Sá de Melo CAR. 2005. Phys. Rev. B 72:024512
  86. 86.
    Iskin M, Sá de Melo CAR. 2006. Phys. Rev. B 74:144517
  87. 87.
    Tajima H, Yerin Y, Perali A, Pieri P. 2019. Phys. Rev. B 99:18180503
  88. 88.
    Yerin Y, Tajima H, Pieri P, Perali A. 2019. Phys. Rev. B 100:104528
  89. 89.
    Shi YR, Zhang W, Sá de Melo CAR. 2022. EPL 139:36004
  90. 90.
    Köhl M, Moritz H, Stöferle T, Günther K, Esllinger T. 2005. Phys. Rev. Lett. 94:080403
  91. 91.
    Chin J, Miller D, Liu Y, Stan C, Setiawan W et al. 2006. Nature 443:961–64
  92. 92.
    Lewandowski C, Lantagne-Hurtubise E, Thomson A, Nadj-Perge S, Alicea J 2022. Phys. Rev. B 107:L020502
  93. 93.
    Van Loon S, Sá de Melo CAR. 2023. arxiv:2303.05017
  94. 94.
    Hazra T, Verma N, Randeria M. 2019. Phys. Rev. X 9:031049
  95. 95.
    Shi T, Zhang W, Sá de Melo CAR. 2022. arxiv:2203.05478
  96. 96.
    Shi T, Zhang W, Sá de Melo CAR. 2023. arxiv:2303.10939
  97. 97.
    Hofmann JS, Chowdhury D, Kivelson SA, Berg E. 2022. NPJ Quantum Mater 7:83
/content/journals/10.1146/annurev-conmatphys-032922-115341
Loading
/content/journals/10.1146/annurev-conmatphys-032922-115341
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error