1932

Abstract

Entropic forces in classical many-body systems, e.g., colloidal suspensions, can lead to the formation of new phases. Quantum fluctuations can have similar effects: spin fluctuations drive the superfluidity of helium-3, and a similar mechanism operating in metals can give rise to superconductivity. It is conventional to discuss the latter in terms of the forces induced by the quantum fluctuations. However, focusing directly upon the free energy provides a useful alternative perspective in the classical case and can also be applied to study quantum fluctuations. Villain first developed this approach for insulating magnets and coined the term order-by-disorder to describe the observed effect. We discuss the application of this idea to metallic systems, recent progress made in doing so, and the broader prospects for the future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-033117-053925
2018-03-10
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/9/1/annurev-conmatphys-033117-053925.html?itemId=/content/journals/10.1146/annurev-conmatphys-033117-053925&mimeType=html&fmt=ahah

Literature Cited

  1. Onsager L. 1.  1949. Ann. N.Y. Acad. Sci. 51:627–59 [Google Scholar]
  2. Adams M, Dogic Z, Keller SL, Fraden S. 2.  1998. Nature 393:349–52 [Google Scholar]
  3. Berezinski VL. 3.  1971. Sov. J. Exp. Theor. Phys. 32:493 [Google Scholar]
  4. Berezinski VL. 4.  1972. Sov. J. Exp. Theor. Phys. 34:610 [Google Scholar]
  5. Kosterlitz JM, Thouless DJ. 5.  1973. J. Phys. C: Solid State Phys. 6:1181 [Google Scholar]
  6. Simons YB, Meerson B. 6.  2009. Phys. Rev. E 80:042102 [Google Scholar]
  7. MacKay DJ. 7.  2003. Information theory, inference and learning algorithms Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  8. London F. 8.  1930. Z. Phys. 63:245–79 [Google Scholar]
  9. Casimir HBG. 9.  1948. Proc. Kon. Ned. Akad. Wetensch. 51:793–95 [Google Scholar]
  10. Anderson PW, Brinkman W. 10.  1973. Phys. Rev. Lett. 30:1108 [Google Scholar]
  11. Brinkman W, Serene J, Anderson P. 11.  1974. Phys. Rev. A 10:2386 [Google Scholar]
  12. Fay D, Appel J. 12.  1980. Phys. Rev. B 22:3173 [Google Scholar]
  13. Villain J, Bidaux R, Carton JP, Conte R. 13.  1980. J. Phys. 41:1263–72 [Google Scholar]
  14. Tchernyshyov O, Moessner R, Sondhi SL. 14.  2002. Phys. Rev. Lett. 88:067203 [Google Scholar]
  15. Zhitomirsky ME, Gvozdikova MV, Holdsworth PCW, Moessner R. 15.  2012. Phys. Rev. Lett. 109:077204 [Google Scholar]
  16. Mulder A, Ganesh R, Capriotti L, Paramekanti A. 16.  2010. Phys. Rev. B 81:214419 [Google Scholar]
  17. Hertz JA. 17.  1976. Phys. Rev. B 14:1165 [Google Scholar]
  18. Landau LD. 18.  1946. Zh. Eksp. Teor. Fiz. 10:25 [Google Scholar]
  19. Moriya T. 19.  2012. Spin Fluctuations in Itinerant Electron Magnetism 56 Springer Ser. Solid State Sci P Fulde. Berlin/Heidelberg: Springer-Verlag [Google Scholar]
  20. Millis A. 20.  1993. Phys. Rev. B 48:7183 [Google Scholar]
  21. Belitz D, Kirkpatrick T, Vojta T. 21.  1997. Phys. Rev. B 55:9452 [Google Scholar]
  22. Geldart DJW, Rasolt M. 22.  1977. Phys. Rev. B 15:1523–32 [Google Scholar]
  23. Betouras J, Efremov D, Chubukov A. 23.  2005. Phys. Rev. B 72:115112 [Google Scholar]
  24. Rech J, Pepin C, Chubukov AV. 24.  2006. Phys. Rev. B 74:195126 [Google Scholar]
  25. Efremov DV, Betouras JJ, Chubukov A. 25.  2008. Phys. Rev. B 77:220401 [Google Scholar]
  26. Maslov DL, Chubukov AV. 26.  2009. Phys. Rev. B 79:075112 [Google Scholar]
  27. Huang K, Yang CN. 27.  1957. Phys. Rev. 105:767 [Google Scholar]
  28. Lee T, Yang C. 28.  1957. Phys. Rev. 105:1119 [Google Scholar]
  29. Abrikosov A, Khalatnikov I. 29.  1958. Sov. Phys. J. Exp. Theoret. Phys. 6:888 [Google Scholar]
  30. Conduit G, Simons B. 30.  2009. Phys. Rev. A 79:053606 [Google Scholar]
  31. Conduit G, Green A, Simons B. 31.  2009. Phys. Rev. Lett. 103:207201 [Google Scholar]
  32. Duine R, MacDonald A. 32.  2005. Phys. Rev. Lett. 95:230403 [Google Scholar]
  33. Pedder C, Krüger F, Green A. 33.  2013. Phys. Rev. B 88:165109 [Google Scholar]
  34. von Keyserlingk C Conduit G. 34.  2013. Phys. Rev. B 87:184424 [Google Scholar]
  35. Karahasanovic U, Krüger F, Green AG. 35.  2012. Phys. Rev. B 85:165111 [Google Scholar]
  36. Julian S. 36.  2012. Physics 5:17 [Google Scholar]
  37. Conduit G, Pedder C, Green A. 37.  2013. Phys. Rev. B 87:121112 [Google Scholar]
  38. Conduit G, Simons B. 38.  2009. Phys. Rev. Lett. 103:200403 [Google Scholar]
  39. Parish MM, Marchetti FM, Lamacraft A, Simons BD. 39.  2007. Nat. Phys. 3:124–28 [Google Scholar]
  40. Conduit G, Altman E. 40.  2011. Phys. Rev. A 83:043618 [Google Scholar]
  41. Pekker D, Babadi M, Sensarma R, Zinner N, Pollet L. 41.  et al. 2011. Phys. Rev. Lett. 106:050402 [Google Scholar]
  42. Jo GB, Lee YR, Choi JH, Christensen CA, Kim TH. 42.  et al. 2009. Science 325:1521–24 [Google Scholar]
  43. Kohstall C, Zaccanti M, Jag M, Trenkwalder A, Massignan P. 43.  et al. 2012. Nature 485:615–18 [Google Scholar]
  44. Bugnion P, Conduit G. 44.  2013. Phys. Rev. A 87:060502 [Google Scholar]
  45. Conduit G. 45.  2013. Phys. Rev. B 87:184414 [Google Scholar]
  46. von Keyserlingk C, Conduit G. 46.  2011. Phys. Rev. A 83:053625 [Google Scholar]
  47. Uemura Y, Goko T, Gat-Malureanu I, Carlo J, Russo P. 47.  et al. 2007. Nat. Phys. 3:29–35 [Google Scholar]
  48. Otero-Leal M, Rivadulla F, García-Hernández M, Piñeiro A, Pardo B. 48.  et al. 2008. Phys. Rev. B 78:180415 [Google Scholar]
  49. Taufour V, Aoki D, Knebel G, Flouquet J. 49.  2010. Phys. Rev. Lett. 105:217201 [Google Scholar]
  50. Yelland EA, Barraclough JM, Wang W, Kamenev KV, Huxley AD. 50.  2011. Nat. Phys. 7:890–94 [Google Scholar]
  51. Lausberg S, Hannaske A, Steppke A, Steinke L, Gruner T. 51.  et al. 2013. Phys. Rev. Lett. 110:256402 [Google Scholar]
  52. Steppke A, Küchler R, Lausberg S, Lengyel E, Steinke L. 52.  et al. 2013. Science 339:933–36 [Google Scholar]
  53. Ishida K, Okamoto K, Kawasaki Y, Kitaoka Y, Trovarelli O. 53.  et al. 2002. Phys. Rev. Lett. 89:107202 [Google Scholar]
  54. Klingner C, Krellner C, Brando M, Geibel C, Steglich F. 54.  et al. 2011. Phys. Rev. B 83:144405 [Google Scholar]
  55. Andrade EC, Brando M, Geibel C, Vojta M. 55.  2014. Phys. Rev. B 90:075138 [Google Scholar]
  56. Krüger F, Pedder C, Green A. 56.  2014. Phys. Rev. Lett. 113:147001 [Google Scholar]
  57. Pfleiderer C, Reznik D, Pintschovius L, Löhneysen Hv, Garst M, Rosch A. 57.  2004. Nature 427:227–31 [Google Scholar]
  58. Krüger F, Karahasanovic U, Green AG. 58.  2012. Phys. Rev. Lett. 108:067003 [Google Scholar]
  59. Ishikawa eY, Tajima K, Bloch D, Roth M. 59.  1976. Solid State Commun 19:525–28 [Google Scholar]
  60. Bak P, Jensen MH. 60.  1980. J. Phys. C: Solid State Phys. 13:L881 [Google Scholar]
  61. Pfleiderer C, Julian SR, Lonzarich GG. 61.  2001. Nature 414:427–30 [Google Scholar]
  62. Uhlarz M, Pfleiderer C, Hayden S. 62.  2004. Phys. Rev. Lett. 93:256404 [Google Scholar]
  63. Crook M, Cywinski R. 63.  1995. J. Magn. Magn. Mater. 140:71–72 [Google Scholar]
  64. Thomson S, Krüger F, Green A. 64.  2013. Phys. Rev. B 87:224203 [Google Scholar]
  65. Lausberg S, Spehling J, Steppke A, Jesche A, Luetkens H. 65.  2012. Phys. Rev. Lett. 109:216402 [Google Scholar]
  66. Abdul-Jabbar G, Sokolov DA, O'Neill CD, Stock C, Wermeille D. 66.  et al. 2015. Nat. Phys. 11:321–27 [Google Scholar]
  67. Lin X, Taufour V, Bud'ko SL, Canfield PC. 67.  2013. Phys. Rev. B 88:094405 [Google Scholar]
  68. Taufour V, Kaluarachchi US, Khasanov R, Nguyen MC, Guguchia Z. 68.  et al. 2016. Phys. Rev. Lett. 117:037207 [Google Scholar]
  69. Kivelson SA, Fradkin E, Emery VJ. 69.  1998. Nature 393:550–53 [Google Scholar]
  70. Pomeranchuk IY. 70.  1959. Sov. Phys. J. Exp. Theoret. Phys. 8:361 [Google Scholar]
  71. Oganesyan V, Kivelson SA, Fradkin E. 71.  2001. Phys. Rev. B 64:195109 [Google Scholar]
  72. Quintanilla J, Schofield A. 72.  2006. Phys. Rev. B 74:115126 [Google Scholar]
  73. Kee HY, Kim EH, Chung CH. 73.  2003. Phys. Rev. B 68:245109 [Google Scholar]
  74. Khavkine I, Chung CH, Oganesyan V, Kee HY. 74.  2004. Phys. Rev. B 70:155110 [Google Scholar]
  75. Kee HY, Kim YB. 75.  2005. Phys. Rev. B 71:184402 [Google Scholar]
  76. Yamase H, Oganesyan V, Metzner W. 76.  2005. Phys. Rev. B 72:035114 [Google Scholar]
  77. Doh H, Friedman N, Kee HY. 77.  2006. Phys. Rev. B 73:125117 [Google Scholar]
  78. Lawler MJ, Barci DG, Fernández V, Fradkin E, Oxman L. 78.  2006. Phys. Rev. B 73:085101 [Google Scholar]
  79. Wu C, Sun K, Fradkin E, Zhang SC. 79.  2007. Phys. Rev. B 75:115103 [Google Scholar]
  80. Lawler MJ, Fradkin E. 80.  2007. Phys. Rev. B 75:033304 [Google Scholar]
  81. Kirkpatrick T, Belitz D. 81.  2011. Phys. Rev. Lett. 106:105701 [Google Scholar]
  82. Hannappel G, Pedder C, Krüger F, Green A. 82.  2016. Phys. Rev. B 93:235105 [Google Scholar]
  83. Wohlfarth E, Rhodes P. 83.  1962. Philos. Mag. 7:1817–24 [Google Scholar]
  84. Grigera S, Gegenwart P, Borzi R, Weickert F, Schofield A. 84.  et al. 2004. Science 306:1154–57 [Google Scholar]
  85. Berridge A, Green A, Grigera S, Simons B. 85.  2009. Phys. Rev. Lett. 102:136404 [Google Scholar]
  86. Conduit G. 86.  2009. Collective phenomena in correlated semiconductors, degenerate fermi gases, and ferroelectrics PhD Thesis, Univ Cambridge, UK: [Google Scholar]
  87. Fradkin E. 87.  2013. Field theories of condensed matter physics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  88. Zaanen J, Chakravarty S, Senthil T, Anderson P, Lee P. 88.  et al. 2006. Nat. Phys. 2:138–43 [Google Scholar]
  89. Nagaosa N. 89.  1999. Quantum Field Theory in Strongly Correlated Electronic Systems. Berlin/Heidelberg: Springer-Verlag [Google Scholar]
  90. Hannappel G. 90.  2016. The role of fluctuations near antiferromagnetic and spin-triplet nematic quantum critical points PhD Thesis, Univ. Coll London, UK: http://discovery.ucl.ac.uk/1489651/ [Google Scholar]
  91. Lemonik Y, Aleiner I, Fal'ko V. 91.  2012. Phys. Rev. B 85:245451 [Google Scholar]
  92. Dahal HP, Wehling TO, Bedell KS, Zhu JX, Balatsky A. 92.  2010. Phys. B: Condens. Matter 405:2241–44 [Google Scholar]
  93. Scherer MM, Uebelacker S, Honerkamp C. 93.  2012. Phys. Rev. B 85:235408 [Google Scholar]
  94. Essenberger F, Sanna A, Linscheid A, Tandetzky F, Profeta G. 94.  et al. 2014. Phys. Rev. B 90:214504 [Google Scholar]
  95. Essenberger F, Sanna A, Buczek P, Ernst A, Sandratskii L, Gross E. 95.  2016. Phys. Rev. B 94:014503 [Google Scholar]
  96. Kotliar G, Savrasov SY, Haule K, Oudovenko VS, Parcollet O, Marianetti C. 96.  2006. Rev. Mod. Phys. 78:865 [Google Scholar]
  97. Fang C, Yao H, Tsai WF, Hu J, Kivelson SA. 97.  2008. Phys. Rev. B 77:224509 [Google Scholar]
  98. Fernandes RM, Chubukov AV, Knolle J, Eremin I, Schmalian J. 98.  2012. Phys. Rev. B 85:024534 [Google Scholar]
  99. Wetterich C. 99.  1993. Phys. Lett. B 301:90 [Google Scholar]
  100. Metzner W, Salmhofer M, Honerkamp C, Meden V, Schönhammer K. 100.  2012. Rev. Mod. Phys. 84:299 [Google Scholar]
  101. Salmhofer M. 101.  1999. Renormalization, an Introduction Berlin/Heidelberg: Springer-Verlag [Google Scholar]
  102. Benfatto G, Gallavotti G. 102.  1990. Phys. Rev. B 42:9967 [Google Scholar]
  103. Shankar R. 103.  1991. Phys. A 177:530 [Google Scholar]
  104. Shankar R. 104.  1994. Rev. Mod. Phys. 66:129 [Google Scholar]
  105. Polchinski J. 105.  1992. Nucl. Phys. B 422:617 [Google Scholar]
  106. Husemann C, Salmhofer M. 106.  2009. Phys. Rev. B 79:195125 [Google Scholar]
  107. Raghu S, Qi XL, Honerkamp C, Zhang SC. 107.  2008. Phys. Rev. Lett. 100:156401 [Google Scholar]
  108. Sánchez de la Peña D, Lichtenstein J, Honerkamp C. 108.  2017. Phys. Rev. B 95:085143 [Google Scholar]
  109. Needs R, Towler M, Drummond N, Ríos PL. 109.  2009. J. Phys.: Condens. Matter 22:023201 [Google Scholar]
  110. Whitehead T, Michael M, Conduit G. 110.  2016. Phys. Rev. B 94:035157 [Google Scholar]
  111. Pilati S, Bertaina G, Giorgini S, Troyer M. 111.  2010. Phys. Rev. Lett. 105:030405 [Google Scholar]
  112. Chang SY, Randeria M, Trivedi N. 112.  2011. PNAS 108:51–54 [Google Scholar]
  113. Bugnion P, Ríos PL, Needs R, Conduit G. 113.  2014. Phys. Rev. A 90:033626 [Google Scholar]
  114. Ma PN, Pilati S, Troyer M, Dai X. 114.  2012. Nat. Phys. 8:601–5 [Google Scholar]
  115. Si Q, Rabello S, Ingersent K, Smith JL. 115.  2001. Nature 413:804–8 [Google Scholar]
  116. Kotliar G, Lange E, Rozenberg M. 116.  2000. Phys. Rev. Lett. 84:5180 [Google Scholar]
  117. Lee PA, Nagaosa N, Wen XG. 117.  2006. Rev. Mod. Phys. 78:17 [Google Scholar]
  118. Senthil T, Vishwanath A, Balents L, Sachdev S, Fisher M. 118.  2004. Science 303:1490–94 [Google Scholar]
  119. Kuklov A, Matsumoto M, Prokof'Ev N, Svistunov B, Troyer M. 119.  2008. Phys. Rev. Lett. 101:050405 [Google Scholar]
  120. Green A, Hooley C, Keeling J, Simon S. 120.  2016. arXiv1607.01778
  121. Read N, Sachdev S. 121.  1989. Phys. Rev. Lett. 62:1694 [Google Scholar]
  122. Maldacena J. 122.  1998. Int. J. Theoret. Phys. 38:1113 [Google Scholar]
  123. Maldacena J. 123.  2005. Sci. Am. 293:56–63 [Google Scholar]
  124. Verlinde E. 124.  2011. J. High Energy Phys. 2011:1–27 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-033117-053925
Loading
/content/journals/10.1146/annurev-conmatphys-033117-053925
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error