1932

Abstract

Raising the superconducting transition temperature to a point where applications are practical is one of the most important challenges in science. In this review, we aim at gaining insights on the controlling factors for a particular high-temperature superconductor family—the FeSe-based superconductors. In particular, we discuss the mechanisms by which the Cooper pairing temperature is enhanced from ∼8 K in bulk FeSe to ∼80 K in the interface between an atomic layer of FeSe and SrTiO. This includes the experimental hints and the theoretical simulation of the involved mechanisms. We end by applying these insights to suggest some possible high-temperature superconducting systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-033117-053942
2018-03-10
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/9/1/annurev-conmatphys-033117-053942.html?itemId=/content/journals/10.1146/annurev-conmatphys-033117-053942&mimeType=html&fmt=ahah

Literature Cited

  1. Onnes HK. 1.  1911. Comm. Phys. Lab. Univ. Leiden no 122b: [Google Scholar]
  2. Bednorz JG, Müller KA. 2.  1986. Z. Phys. B-Condens. Matter 64:189–93 [Google Scholar]
  3. Kamihara Y, Hiramatsu H, Hirabo M, Kawamura R, Yanagi H. 3.  et al. 2006. J. Am. Chem. Soc 128:10012–13 [Google Scholar]
  4. Schilling A, Cantoni M, Guo JD, Ott HR. 4.  1993. Nature 363:642456–58 [Google Scholar]
  5. Ren Z, Yang J, Lu W, Yi W, Che G. 5.  et al. 2008. Chin. Phys. Lett. 25:2215–16 [Google Scholar]
  6. Bardeen J, Cooper LN, Schrieffer JR. 6.  1957. Phys. Rev. 108:1175 [Google Scholar]
  7. Landau LD. 7.  1956. J. Exp. Theoret. Phys. (USSR) 30:1058–64 [Google Scholar]
  8. Bardeen J, Pines D. 8.  1955. Phys. Rev. 99:1140 [Google Scholar]
  9. Cooper LN. 9.  1956. Phys. Rev. 104:1189 [Google Scholar]
  10. Taillefer L. 10.  2010. Annu. Rev. Condens. Matter Phys. 1:51–70 [Google Scholar]
  11. Wang QY, Li Z, Zhang WH, Zhang ZC, Zhang JS. 11.  et al. 2012. Chin. Phys. Lett. 29:037402 [Google Scholar]
  12. Liu D, Zhang W, Mou D, He J, Ou YB. 12.  et al. 2012. Nat. Commun. 3:931 [Google Scholar]
  13. He S, He J, Zhang W, Zhao L, Liu D. 13.  et al. 2013. Nat. Mater. 12:605–10 [Google Scholar]
  14. Tan S, Zhang Y, Xia M, Ye Z, Chen F. 14.  et al. 2013. Nat. Mater. 12:634–40 [Google Scholar]
  15. Peng R, Xu HC, Tan SY, Cao HY, Xia M. 15.  et al. 2014. Nat. Commun. 5:5044 [Google Scholar]
  16. Lee JJ, Schmitt FT, Moore RG, Johnston S, Cui YT. 16.  et al. 2014. Nature 515:245–48 [Google Scholar]
  17. Shimojima T, Suzuki Y, Sonobe T, Nakamura A, Sakano M. 17.  et al. 2014. Phys. Rev. B 90:121111 [Google Scholar]
  18. Nakayama K, Miyata Y, Phan GN, Sato T, Tanabe Y. 18.  et al. 2014. Phys. Rev. Lett. 113:237001 [Google Scholar]
  19. Watson MD, Kim TK, Haghighirad AA, Davies NR, McCollam A. 19.  et al. 2016. Phys. Rev. B 91:155106 [Google Scholar]
  20. Suzuki Y, Shimojima T, Sonobe T, Nakamura A, Sakano M. 20.  et al. 2015. Phys. Rev. B 92:205117 [Google Scholar]
  21. Zhang P, Qian T, Richard P, Wang XP, Miao H. 21.  et al. 2015. Phys. Rev. B 91:214503 [Google Scholar]
  22. Xu HC, Niu XH, Xu DF, Jiang J, Yao Q. 22.  et al. 2016. Phys. Rev. Lett. 117:157003 [Google Scholar]
  23. Watson MD, Kim TK, Rhodes LC, Eschrig M, Hoesch M. 23.  et al. 2016.b Phys. Rev. B 94:201107 [Google Scholar]
  24. Fedorov A, Yaresko A, Kim TK, Kushnirenko E, Haubold E. 24.  et al. 2016. Sci. Rep. 6:36834 [Google Scholar]
  25. Zhang Y, Yang LX, Xu M, Ye ZR, Chen F. 25.  et al. 2011. Nat. Mater. 10:273 [Google Scholar]
  26. Mou D, Liu S, Jia X, He J, Peng Y. 26.  et al. 2011. Phys. Rev. Lett. 106:107001 [Google Scholar]
  27. Zhang Y, Lee JJ, Moore RG, Li W, Yi M. 27.  et al. 2016. Phys. Rev. Lett. 117:117001 [Google Scholar]
  28. Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T. 28.  2015. Nat. Mater. 14:775 [Google Scholar]
  29. Zhao L, Liang A, Yuan D, Hu Y, Liu D. 29.  et al. 2016. Nat. Commun. 710608 [Google Scholar]
  30. Niu XH, Peng R, Xu HC, Yan YJ, Jiang J. 30.  et al. 2015. Phys. Rev. B 92060504 [Google Scholar]
  31. Tang C, Zhang D, Zang Y, Liu C, Zhou G. 31.  et al. 2015. Phys. Rev. B 92180507R) [Google Scholar]
  32. Wen CHP, Xu HC, Chen C, Huang ZC, Lou X. 32.  et al. 2016. Nat. Commun. 710840 [Google Scholar]
  33. Song CL, Zhang HM, Zhong Y, Hu XP, Ji SH. 33.  et al. 2016. Phys. Rev. Lett. 116157001 [Google Scholar]
  34. Tang C, Liu C, Zhou G, Li F, Ding H. 34.  et al. 2016. Phys. Rev. B 93020507R) [Google Scholar]
  35. Ye ZR, Zhang CF, Ning HL, Li W, Chen L. 35.  et al. 2015. arXiv1512.02526
  36. Wang Q, Shen Y, Pan B, Zhang X, Ikeuchi K. 36.  et al. 2016. Nat. Commun. 712182 [Google Scholar]
  37. McQueen TM, Williams AJ, Stephens PW, Tao J, Zhu Y. 37.  et al. 2009. Phys. Rev. Lett. 103:057002 [Google Scholar]
  38. Chu JH, Analytis JG, De Greve K, McMahon PL, Islam Z. 38.  et al. 2010. Science 329824 [Google Scholar]
  39. Fernandes RM, Chubukov AV, Schmalian J. 39.  2014. Nat. Phys. 1097 [Google Scholar]
  40. Wang F, Kivelson SA, Lee DH. 40.  2015. Nat. Phys. 11959–63 [Google Scholar]
  41. Turner DW. 41.  1970. Philos. Trans. R. Soc. Lond. A 268:7–31 [Google Scholar]
  42. Choudhury N, Walter EJ, Kolesnikov AI, Loong CK. 42.  2008. Phys. Rev. B 77:134111 [Google Scholar]
  43. Lasota C, Wang CZ, Yu R, Krakauer H. 43.  1997. Ferroelectrics 194:109–18 [Google Scholar]
  44. Stirling WG. 44.  1972. J. Phys. C: Solid State Phys. 5:2711 [Google Scholar]
  45. Zhang S, Guan J, Jia X, Liu B, Wang W. 45.  et al. 2016. Phys. Rev B 94:081116R) [Google Scholar]
  46. Wang Z, McKeown Walker S, Tamai A, Wang Y, Ristic Z. 46.  et al. 2016. Nat. Mater. 15:835–39 [Google Scholar]
  47. Lee DH. 47.  2015. Chin. Phys. B 24:117405 [Google Scholar]
  48. Axe JD. 48.  1967. Phys. Rev. 157:429 [Google Scholar]
  49. Zhong W, King-Smith RD, Vanderbilt D. 49.  1994. Phys. Rev. Lett. 72:3618 [Google Scholar]
  50. Zhou Y, Millis AJ. 50.  2016. Phys. Rev. B 93:224506 [Google Scholar]
  51. Zhang P, Peng XL, Qian T, Richard P, Shi X. 51.  et al. 2016. Phys. Rev. B 94:104510 [Google Scholar]
  52. Zhou G, Zhang D, Liu C, Tang C, Wang X. 52.  et al. 2016. Appl. Phys. Lett. 108:202603 [Google Scholar]
  53. Ding H, Lv YF, Zhao K, Wang WL, Wang L. 53.  et al. 2016. Phys. Rev. Lett. 117:067001 [Google Scholar]
  54. Zhang C, Liu Z, Chen Z, Xie Y, He R. 54.  et al. 2017. Nat. Commun. 8:14468 [Google Scholar]
  55. Rebec SN, Jia T, Zhang C, Hashimoto M, Lu DH. 55.  et al. 2017. Phys. Rev. Lett. 118:067002 [Google Scholar]
  56. Li ZX, Wang F, Yao H, Lee DH. 56.  2016. Sci. Bull. 61:925–30 [Google Scholar]
  57. Lu XF, Wang NZ, Wu H, Wu YP, Zhao D. 57.  et al. 2015. Nat. Mater. 14:325 [Google Scholar]
  58. Maier TA, Scalapino DJ. 58.  2014. Phys. Rev. B 90:174510 [Google Scholar]
  59. Metlitski MA, Mross DF, Sachdev S, Senthil T. 59.  2015. Phys. Rev. B 91:115111 [Google Scholar]
  60. Lederer S, Schattner Y, Berg E, Kivelson SA. 60.  2015. Phys. Rev. Lett. 114097001 [Google Scholar]
  61. Coh S, Lee DH, Louie SG, Cohen ML. 61.  2016. Phys. Rev. B 93245138 [Google Scholar]
  62. Zhao K, Lv B, Deng L, Huyan SY, Xue YY, Chu CW. 62.  2016. PNAS 11312968–73 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-033117-053942
Loading
/content/journals/10.1146/annurev-conmatphys-033117-053942
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error