1932

Abstract

Starting with the isolation of a single sheet of graphene, the study of layered materials has been one of the most active areas of condensed matter physics, chemistry, and materials science. Single-layer transition-metal dichalcogenides are direct-gap semiconducting analogs of graphene that exhibit novel electronic and optical properties. These features provide exciting opportunities for the discovery of both new fundamental physical phenomena as well as innovative device platforms. Here, we review the progress associated with the creation and use of a simple microscopic framework for describing the optical and excitonic behavior of few-layer transition-metal dichalcogenides, which is based on symmetry, band structure, and the effective interactions between charge carriers in these materials. This approach provides an often quantitative account of experiments that probe the physics associated with strong electron–hole interactions in these quasi two-dimensional systems and has been successfully employed by many groups to both describe and predict emergent excitonic behavior in these layered semiconducting systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-033117-054009
2018-03-10
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/9/1/annurev-conmatphys-033117-054009.html?itemId=/content/journals/10.1146/annurev-conmatphys-033117-054009&mimeType=html&fmt=ahah

Literature Cited

  1. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV. 1.  et al. 2005. PNAS 102:10451–53 [Google Scholar]
  2. Frindt RF. 2.  1966. J. Appl. Phys. 37:1928–29 [Google Scholar]
  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y. 3.  et al. 2004. Science 306:666–69 [Google Scholar]
  4. Li H, Wu J, Huang X, Lu G, Yang J. 4.  et al. 2013. ACS Nano 7:10344–53 [Google Scholar]
  5. Elas AL, Perea-López N, Castro-Beltrán A, Berkdemir A, Lv R. 5.  et al. 2013. ACS Nano 7:5235–42 [Google Scholar]
  6. van der Zande AM, Huang PY, Chenet DA, Berkelbach TC, You Y. 6.  et al. 2013. Nat. Mater. 12:554 [Google Scholar]
  7. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H. 7.  2013. Nat. Chem. 5:263 [Google Scholar]
  8. Lv R, Robinson JA, Schaak RE, Sun D, Sun Y. 8.  et al. 2015. Acc. Chem. Res. 48:56–64 [Google Scholar]
  9. Shanmugam M, Bansal T, Durcan CA, Yu B. 9.  2012. Appl. Phys. Lett. 100:153901 [Google Scholar]
  10. Lee CH, Lee GH, van der Zande AM, Chen W, Li Y. 10.  et al. 2014. Nat. Nanotech. 9:676 [Google Scholar]
  11. Splendiani A, Sun L, Zhang Y, Li T, Kim J. 11.  et al. 2010. Nano Lett 10:1271 [Google Scholar]
  12. Mak KF, Lee C, Hone J, Shan J, Heinz TF. 12.  2010. Phys. Rev. Lett. 105:136805 [Google Scholar]
  13. Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M. 13.  2011. Nano Lett 11:5111–16 [Google Scholar]
  14. Chernikov A, Ruppert C, Hill HM, Rigosi AF, Heinz TF. 14.  2015. Nat. Photon. 9:466 [Google Scholar]
  15. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. 15.  2011. Nat. Nanotech. 6:147 [Google Scholar]
  16. Ando T, Fowler AB, Stern F. 16.  1982. Rev. Mod. Phys. 54:437–672 [Google Scholar]
  17. Schmitt-Rink S, Chemla D, Miller D. 17.  1989. Adv. Phys. 38:89–188 [Google Scholar]
  18. Evans BL, Young PA. 18.  1967. Proc. R. Soc. A 298:74–96 [Google Scholar]
  19. Wilson J, Yoffe A. 19.  1969. Adv. Phys. 18:193–335 [Google Scholar]
  20. Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E. 20.  et al. 2012. Phys. Rev. Lett. 108:155501 [Google Scholar]
  21. Dávila ME, Xian L, Cahangirov S, Rubio A, Le Lay G. 21.  2014. New J. Phys. 16:095002 [Google Scholar]
  22. Xia F, Wang H, Jia Y. 22.  2014. Nat. Commun. 5:4458 [Google Scholar]
  23. Mannix AJ, Zhou XF, Kiraly B, Wood JD, Alducin D. 23.  et al. 2015. Science 350:1513–16 [Google Scholar]
  24. Geim A, Grigorieva I. 24.  2013. Nature 499:419 [Google Scholar]
  25. Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH. 25.  2016. Science 353:6298acc9439 [Google Scholar]
  26. Jariwala D, Marks TJ, Hersam MC. 26.  2017. Nat. Mater. 16:170 [Google Scholar]
  27. Mattheiss LF. 27.  1973. Phys. Rev. B 8:3719–40 [Google Scholar]
  28. Li T, Galli G. 28.  2007. J. Phys. Chem. C 111:16192–96 [Google Scholar]
  29. Zhu ZY, Cheng YC, Schwingenschlögl U. 29.  2011. Phys. Rev. B 84:153402 [Google Scholar]
  30. Lebègue S, Eriksson O. 30.  2009. Phys. Rev. B 79:115409 [Google Scholar]
  31. Cheiwchanchamnangij T, Lambrecht WRL. 31.  2012. Phys. Rev. B 85:205302 [Google Scholar]
  32. Ramasubramaniam A. 32.  2012. Phys. Rev. B 86:115409 [Google Scholar]
  33. Shi H, Pan H, Zhang YW, Yakobson BI. 33.  2013. Phys. Rev. B 87:155304 [Google Scholar]
  34. Qiu DY, da Jornada FH, Louie SG. 34.  2013. Phys. Rev. Lett. 111:216805 [Google Scholar]
  35. Hüser F, Olsen T, Thygesen KS. 35.  2013. Phys. Rev. B 88:245309 [Google Scholar]
  36. Jin W, Yeh PC, Zaki N, Zhang D, Sadowski JT. 36.  et al. 2013. Phys. Rev. Lett. 111:106801 [Google Scholar]
  37. Zhang Y, Chang TR, Zhou B, Cui YT, Yan H. 37.  et al. 2014. Nat. Nanotech. 9:111 [Google Scholar]
  38. Xiao D, Liu GB, Feng W, Xu X, Yao W. 38.  2012. Phys. Rev. Lett. 108:196802 [Google Scholar]
  39. Liu GB, Shan WY, Yao Y, Yao W, Xiao D. 39.  2013. Phys. Rev. B 88:085433 [Google Scholar]
  40. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. 40.  2009. Rev. Mod. Phys. 81:109–62 [Google Scholar]
  41. Berkelbach TC, Hybertsen MS, Reichman DR. 41.  2015. Phys. Rev. B 92:085413 [Google Scholar]
  42. Zeng H, Dai J, Yao W, Xiao D, Cui X. 42.  2012. Nat. Nanotech. 7:490 [Google Scholar]
  43. Mak KF, He K, Shan J, Heinz TF. 43.  2012. Nat. Nanotech. 7:494 [Google Scholar]
  44. Kośmider K, González JW, Fernández-Rossier J. 44.  2013. Phys. Rev. B 88:245436 [Google Scholar]
  45. Kormányos A, Zólyomi V, Drummond ND, Burkard G. 45.  2014. Phys. Rev. X 4:011034 [Google Scholar]
  46. Zhang XX, You Y, Zhao SYF, Heinz TF. 46.  2015. Phys. Rev. Lett. 115:257403 [Google Scholar]
  47. Hedin L. 47.  1965. Phys. Rev. 139:A796–823 [Google Scholar]
  48. Hybertsen MS, Louie SG. 48.  1986. Phys. Rev. B 34:5390 [Google Scholar]
  49. Qiu DY, da Jornada FH, Louie SG. 49.  2015. Phys. Rev. Lett. 115:119901 [Google Scholar]
  50. Rasmussen FA, Schmidt PS, Winther KT, Thygesen KS. 50.  2016. Phys. Rev. B 94:155406 [Google Scholar]
  51. Rasmussen FA, Thygesen KS. 51.  2015. J. Phys. Chem. C 119:13169–83 [Google Scholar]
  52. Latini S, Olsen T, Thygesen KS. 52.  2015. Phys. Rev. B 92:245123 [Google Scholar]
  53. Rytova NS. 53.  1967. Vestn. Mosk. Univ. Fiz. Astron. 3:30 [Google Scholar]
  54. Keldysh LV. 54.  1979. J. Exp. Theoret. Phys. Lett. 29:658 [Google Scholar]
  55. Hong X, Ishihara T, Nurmikko AV. 55.  1992. Phys. Rev. B 45:6961–64 [Google Scholar]
  56. Berkelbach TC, Hybertsen MS, Reichman DR. 56.  2013. Phys. Rev. B 88:045318 [Google Scholar]
  57. Cudazzo P, Tokatly IV, Rubio A. 57.  2011. Phys. Rev. B 84:085406 [Google Scholar]
  58. Chernikov A, van der Zande AM, Hill HM, Rigosi AF, Velauthapillai A. 58.  et al. 2015. Phys. Rev. Lett. 115:126802 [Google Scholar]
  59. Stern F. 59.  1967. Phys. Rev. Lett. 18:546–48 [Google Scholar]
  60. Steinhoff A, Kim JH, Jahnke F, Rösner M, Kim DS. 60.  et al. 2015. Nano Lett 15:6841–47 [Google Scholar]
  61. Wang Y, Ou JZ, Chrimes AF, Carey BJ, Daeneke T. 61.  et al. 2015. Nano Lett 15:883–90 [Google Scholar]
  62. Wu F, Qu F, MacDonald AH. 62.  2015. Phys. Rev. B 91:075310 [Google Scholar]
  63. Dresselhaus G. 63.  1956. J. Phys. Chem. Solids 1:14–22 [Google Scholar]
  64. Srivastava A, Imamoğlu A. 64.  2015. Phys. Rev. Lett. 115:166802 [Google Scholar]
  65. Zhou J, Shan WY, Yao W, Xiao D. 65.  2015. Phys. Rev. Lett. 115:166803 [Google Scholar]
  66. Hao K, Moody G, Wu F, Dass CK, Xu L. 66.  et al. 2016. Nat. Phys. 12:677–82 [Google Scholar]
  67. Rohlfing M, Louie SG. 67.  2000. Phys. Rev. B 62:4927 [Google Scholar]
  68. Berghäuser G, Malic E. 68.  2014. Phys. Rev. B 89:125309 [Google Scholar]
  69. Zhang C, Wang H, Chan W, Manolatou C, Rana F. 69.  2014. Phys. Rev. B 89:205436 [Google Scholar]
  70. Elliott RJ. 70.  1957. Phys. Rev. 108:1384 [Google Scholar]
  71. Haug H, Koch SW. 71.  2009. Quantum Theory of the Optical and Electronic Properties of Semiconductors World Sci, Singap., , 5th ed.. [Google Scholar]
  72. Tanaka K, Takahashi T, Kondo T, Umebayashi T, Asai K, Ema K. 72.  2005. Phys. Rev. B 71:045312 [Google Scholar]
  73. Chernikov A, Berkelbach TC, Hill HM, Rigosi A, Li Y. 73.  et al. 2014. Phys. Rev. Lett. 113:076802 [Google Scholar]
  74. He K, Kumar N, Zhao L, Wang Z, Mak KF. 74.  et al. 2014. Phys. Rev. Lett. 113:026803 [Google Scholar]
  75. Ugeda MM, Bradley AJ, Shi SF, da Jornada FH, Zhang Y. 75.  et al. 2014. Nat. Mater. 13:1091 [Google Scholar]
  76. Andersen K, Latini S, Thygesen KS. 76.  2015. Nano Lett 15:4616–21 [Google Scholar]
  77. Kleinman DA. 77.  1983. Phys. Rev. B 28:871–79 [Google Scholar]
  78. Esser A, Zimmermann R, Runge E. 78.  2001. Phys. Status Solidi(b) 227:317–30 [Google Scholar]
  79. Combescot M, Shiau SY. 79.  2015. Excitons and Cooper Pairs: Two Composite Bosons in Many-Body Physics Oxford Univ. Press, , 1st ed.. [Google Scholar]
  80. Mak KF, He K, Lee C, Lee GH, Hone J. 80.  et al. 2013. Nat. Mater. 12:207 [Google Scholar]
  81. Ross JS, Wu S, Yu H, Ghimire NJ, Jones AM. 81.  et al. 2013. Nat. Comm. 4:1474 [Google Scholar]
  82. You Y, Zhang XX, Berkelbach TC, Hybertsen MS, Reichman DR, Heinz TF. 82.  2015. Nat. Phys. 11:477 [Google Scholar]
  83. Mayers MZ, Berkelbach TC, Hybertsen MS, Reichman DR. 83.  2015. Phys. Rev. B 92:161404 [Google Scholar]
  84. Ramirez-Torres A, Turkowski V, Rahman TS. 84.  2014. Phys. Rev. B 90:085419 [Google Scholar]
  85. Deilmann T, Drüppel M, Rohlfing M. 85.  2016. Phys. Rev. Lett. 116:196804 [Google Scholar]
  86. Ganchev B, Drummond N, Aleiner I, Fal'ko V. 86.  2015. Phys. Rev. Lett. 114:107401 [Google Scholar]
  87. Velizhanin KA, Saxena A. 87.  2015. Phys. Rev. B 92:195305 [Google Scholar]
  88. Kylänpää I, Komsa HP. 88.  2015. Phys. Rev. B 92:205418 [Google Scholar]
  89. Zhang DK, Kidd DW, Varga K. 89.  2015. Nano Lett 15:7002–5 [Google Scholar]
  90. Kidd DW, Zhang DK, Varga K. 90.  2016. Phys. Rev. B 93:125423 [Google Scholar]
  91. Hao K, Specht JF, Nagler P, Xu L, Tran K. 91.  et al. 2017. Nat. Commun. 8:15552 [Google Scholar]
  92. Ye Z, Cao T, O'Brien K, Zhu H, Yin X. 92.  et al. 2014. Nature 513:214 [Google Scholar]
  93. Wang G, Marie X, Gerber I, Amand T, Lagarde D. 93.  et al. 2015. Phys. Rev. Lett. 114:097403 [Google Scholar]
  94. Shi H, Yan R, Bertolazzi S, Brivio J, Gao B. 94.  et al. 2013. ACS Nano 7:1072–80 [Google Scholar]
  95. Mai C, Semenov YG, Barrette A, Yu Y, Jin Z. 95.  et al. 2014. Phys. Rev. B 90:041414 [Google Scholar]
  96. Singh A, Moody G, Wu S, Wu Y, Ghimire NJ. 96.  et al. 2014. Phys. Rev. Lett. 112:216804 [Google Scholar]
  97. Sie EJ, Frenzel AJ, Lee YH, Kong J, Gedik N. 97.  2015. Phys. Rev. B 92:125417 [Google Scholar]
  98. Moody G, Kavir Dass C, Hao K, Chen CH, Li LJ. 98.  et al. 2015. Nat. Commun. 6:8315 [Google Scholar]
  99. Pankove JI. 99.  2010. Optical Processes in Semiconductors Dover Publ, 2nd ed.. [Google Scholar]
  100. Ajayi O, Ardelean J, Shepard G, Wang J, Antony A. 100.  et al. 2017. 2D Materials 4:3031011 [Google Scholar]
  101. Cadiz F, Courtade E, Robert C, Wang G, Shen Y. 101.  et al. 2017. Phys. Rev. X 7:021026 [Google Scholar]
  102. Ruppert C, Chernikov A, Hill HM, Rigosi AF, Heinz TF. 102.  2017. Nano Lett 17:644–51 [Google Scholar]
  103. Ohtaka K, Tanabe Y. 103.  1990. Rev. Mod. Phys. 62:929–91 [Google Scholar]
  104. Sidler M, Back P, Cotlet O, Srivastava A, Fink T. 104.  et al. 2017. Nat. Phys. 13:255–61 [Google Scholar]
  105. Efimkin DK, MacDonald AH. 105.  2017. Phys. Rev. B 95:035417 [Google Scholar]
  106. Gao S, Liang Y, Spataru CD, Yang L. 106.  2016. Nano Lett 16:5568–73 [Google Scholar]
  107. Hawrylak P. 107.  1991. Phys. Rev. B 44:3821 [Google Scholar]
  108. Huard V, Cox RT, Saminadayar K, Arnoult A, Tatarenko S. 108.  2000. Phys. Rev. Lett. 84:187 [Google Scholar]
  109. Shiau SY, Combescot M, Chang YC. 109.  2017. Europhys. Lett. 117:557001 [Google Scholar]
  110. Arora A, Koperski M, Nogajewski K, Marcus J, Faugeras C, Potemski M. 110.  2015. Nanoscale 7:10421–29 [Google Scholar]
  111. Arora A, Nogajewski K, Molas M, Koperski M, Potemski M. 111.  2015. Nanoscale 7:20769–75 [Google Scholar]
  112. Dey P, Paul J, Wang Z, Stevens CE, Liu C. 112.  et al. 2016. Phys. Rev. Lett. 116:127402 [Google Scholar]
  113. Koirala S, Mouri S, Miyauchi Y, Matsuda K. 113.  2016. Phys. Rev. B 93:075411 [Google Scholar]
  114. Selig M, Berghäuser G, Raja A, Nagler P, Schüller C. 114.  et al. 2016. Nat. Commun. 7:13279 [Google Scholar]
  115. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC. 115.  2014. ACS Nano 8:1102–20. PMID: 24476095 [Google Scholar]
  116. Rivera P, Schaibley JR, Jones AM, Ross JS, Wu S. 116.  et al. 2015. Nat. Commun. 6:6242 [Google Scholar]
  117. Mak KF, Shan J. 117.  2016. Nat. Photon. 10:216–26 Review [Google Scholar]
  118. Fogler MM, Butov LV, Novoselov KS. 118.  2014. Nat. Commun. 5:4555 [Google Scholar]
  119. Wu FC, Xue F, MacDonald AH. 119.  2015. Phys. Rev. B 92:165121 [Google Scholar]
  120. High AA, Leonard JR, Hammack AT, Fogler MM, Butov LV. 120.  et al. 2012. Nature 483:584–88 [Google Scholar]
  121. Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B. 121.  et al. 2014. PNAS 111:6198–202 [Google Scholar]
  122. Ceballos F, Bellus MZ, Chiu HY, Zhao H. 122.  2014. ACS Nano 8:12717–24 [Google Scholar]
  123. Rivera P, Seyler KL, Yu H, Schaibley JR, Yan J. 123.  et al. 2016. Science 351:688–91 [Google Scholar]
  124. Komsa HP, Krasheninnikov AV. 124.  2013. Phys. Rev. B 88:085318 [Google Scholar]
  125. Latini S, Winther KT, Olsen T, Thygesen KS. 125.  2017. Nano Lett 17:938–45 [Google Scholar]
  126. Kunstmann J, Mooshammer F, Nagler P, Chaves A, Stein F. 126.  et al. 2017. Nat. Phys. Accepted [Google Scholar]
  127. Miller B, Steinhoff A, Pano B, Jahnke F, Holleitner A, Wurstbauer U. 127.  2017. arXiv1703.09566
  128. Zhu H, Wang J, Gong Z, Kim YD, Gustafsson M. 128.  et al. 2017. Nano Lett 17:63591–98 [Google Scholar]
  129. Nayak PK, Horbatenko Y, Ahn S, Kim G, Lee JU. 129.  et al. 2017. ACS Nano 11:44041–50 [Google Scholar]
  130. Wilson NR, Nguyen PV, Seyler K, Rivera P, Marsden AJ. 130.  et al. 2017. Sci. Adv. 3:e1601832 [Google Scholar]
  131. Wang Q, Kalantar-Zadeh K, Kis A, Coleman J, Strano M. 131.  2012. Nat. Nanotech. 7:699 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-033117-054009
Loading
/content/journals/10.1146/annurev-conmatphys-033117-054009
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error