1932

Abstract

Focused ion beam (FIB) machining promises exciting new possibilities for the study of quantum materials through precise control over the shape and geometry of single crystals on the submicrometer scale. It offers viable routes to fabricate high-quality mesoscale structures from materials that cannot yet be grown in thin-film form and to enhance the experimentally accessible signatures of new physical phenomena. Prototype devices can also be produced in a silicon-chip environment to investigate directly the materials application potential for future electronics. This review introduces the concepts of ion beam shaping of matter, discusses the role and extent of surface damage and material disorder inherent to these techniques, and gives an overview of recent experiments on FIB-structured crystals. Given the early stage of the field of FIB-fabricated quantum materials, much is yet to come, and emergent trends and future directions are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-033117-054021
2018-03-10
2025-02-16
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/9/1/annurev-conmatphys-033117-054021.html?itemId=/content/journals/10.1146/annurev-conmatphys-033117-054021&mimeType=html&fmt=ahah

Literature Cited

  1. Krohn VE, Ringo GR. 1.  1975. Appl. Phys. Lett. 27:479–81 [Google Scholar]
  2. Seliger RL, Ward JW, Wang V, Kubena RL. 2.  1979. Appl. Phys. Lett. 34:310–12 [Google Scholar]
  3. Orloff J, Utlaut M, Swanson L. 3.  2003. High Resolution Focused Ion Beams: FIB and Its Applications. New York: Springer Sci. Bus.
  4. Gierak J. 4.  2009. Semicond. Sci. Technol. 24:43001 [Google Scholar]
  5. Ishitani T, Yaguchi T. 5.  1996. Microsc. Res. Tech. 35:320–33 [Google Scholar]
  6. Uchic MD, Dimiduk DM, Florando JN, Nix WD. 6.  2004. Science 305:986–89 [Google Scholar]
  7. Chen F. 7.  2012. Laser Photonics Rev 6:622–40 [Google Scholar]
  8. Narayan K, Subramaniam S. 8.  2015. Nat. Methods 12:1021–31 [Google Scholar]
  9. Latyshev YI, Yamashita T. 9.  1999. Phys. Rev. Lett. 82:5345–48 [Google Scholar]
  10. Kadowaki K, Kakeya I, Yamamoto T, Yamazaki T, Kohri M, Kubo Y. 10.  2006. Phys. C 437–38:111–17 [Google Scholar]
  11. Kim SJ, Latyshev YI, Yamashita T. 11.  1999. Appl. Phys. Lett. 74:1156–58 [Google Scholar]
  12. Simon RW, Bulman JB, Burch JF, Coons SB, Daly KP. 12.  et al. 1991. IEEE Trans. Magn. 27:3209 [Google Scholar]
  13. Nagel J, Konovalenko KB, Kemmler M, Turad M, Werner R. 13.  et al. 2011. Supercond. Sci. Technol. 24:15015 [Google Scholar]
  14. Sandhu A, Masuda H, Kurosawa K, Oral A, Bending SJ. 14.  2001. Electron. Lett. 37:524–27 [Google Scholar]
  15. Stanishevsky A, Aggarwal S, Prakash AS, Melngailis J, Ramesh R. 15.  1998. J. Vac. Sci. Technol. B 16:3899–902 [Google Scholar]
  16. Lobo DE, Banerjee PC, Easton CD, Majumder M. 16.  2015. Adv. Energy Mater. 5:1500665 [Google Scholar]
  17. Nagase M, Takahashi H, Shirakawabe Y, Namatsu H. 17.  2003. Jpn. J. Appl. Phy. 42:4856–60 [Google Scholar]
  18. Du H, Degrave JP, Xue F, Liang D, Ning W. 18.  et al. 2014. Nano Lett 14:2026–32 [Google Scholar]
  19. Zhang Y, Hui C, Sun R, Li K, He K. 19.  et al. 2014. Nanotechnology 25:135301 [Google Scholar]
  20. Jang J, Ferguson DG, Vakaryuk V, Budakian R, Chung SB. 20.  et al. 2011. Science 331:186–88 [Google Scholar]
  21. Nago Y, Shinozaki T, Tsuchiya S, Ishiguro R, Kashiwaya H. 21.  et al. 2016. J. Low Temp. Phys. 183:292–99 [Google Scholar]
  22. Kambara H, Kashiwaya S, Kashiwaya H, Tanaka Y, Maeno Y. 22.  2011. Phys. C 471:708–10 [Google Scholar]
  23. Kashiwaya S, Kambara H, Kashiwaya H, Furuta T, Yaguchi H. 23.  et al. 2010. Phys. C 470:S736–37 [Google Scholar]
  24. Kambara H, Kashiwaya S, Yaguchi H, Asano Y, Tanaka Y, Maeno Y. 24.  2009. Phys. C 469:1030–33 [Google Scholar]
  25. Kashiwaya S, Kashiwaya H, Kambara H, Furuta T, Yaguchi H. 25.  et al. 2011. Phys. Rev. Lett. 107:77003 [Google Scholar]
  26. Jaroszynski J, Hunte F, Balicas L, Jo Y, Raicevic I. 26.  et al. 2008. Phys. Rev. B 78:174523 [Google Scholar]
  27. Moll PJW, Zeng B, Balicas L, Galeski S, Balakirev FF. 27.  et al. 2015. Nat. Commun. 6:6663 [Google Scholar]
  28. Moll PJW, Puzniak R, Balakirev F, Rogacki K, Karpinski J. 28.  et al. 2010. Nat. Mater. 9:628–33 [Google Scholar]
  29. Lucot D, Gierak J, Ouerghi A, Bourhis E, Faini G, Mailly D. 29.  2009. Microelectron. Eng. 86:882–84 [Google Scholar]
  30. Stewart GR. 30.  2011. Rev. Mod. Phys. 83:1589–652 [Google Scholar]
  31. Luo HQ, Cheng P, Wang ZS, Yang H, Jia Y. 31.  et al. 2009. Phys. C 469:477–84 [Google Scholar]
  32. Pisoni A, Katrych S, Arakcheeva A, Verebélyi T, Bokor M. 32.  et al. 2016. Phys. Rev. B 94:24525 [Google Scholar]
  33. Katrych S, Rogacki K, Pisoni A, Bosma S, Weyeneth S. 33.  et al. 2013. Phys. Rev. B 87:180508R) [Google Scholar]
  34. Pisoni A, Katrych S, Szirmai P, Náfrádi B, Gaál R. 34.  et al. 2016. J. Phys. Condens. Matter 28:115701 [Google Scholar]
  35. Shirai K, Kashiwaya H, Miura S, Ishikado M, Eisaki H. 35.  et al. 2010. Phys. C 470:1473–76 [Google Scholar]
  36. Kashiwaya H, Shirai K, Matsumoto T, Shibata H, Kambara H. 36.  et al. 2010. Appl. Phys. Lett. 96:202504 [Google Scholar]
  37. Müller P, Koval Y, Lazareva I, Steiner C, Wurmehl S. 37.  et al. 2016. Phys. Status Solidi B 254:1600157 [Google Scholar]
  38. Hong S-H, Lee S-G, Jung S-G, Kang WN. 38.  2012. J. Korean Phys. Soc. 61:1430–34 [Google Scholar]
  39. Hong S-H, Lee NH, Kang WN, Lee S-G. 39.  2014. Supercond. Sci. Tech. 27:55007 [Google Scholar]
  40. Li J, Ji M, Schwarz T, Ke X, Van Tendeloo G. 40.  et al. 2015. Nat. Commun. 6:7614 [Google Scholar]
  41. Caglieris F, Sala A, Fujioka M, Hummel F, Pallecchi I. 41.  et al. 2016. APL Mater 4:20702 [Google Scholar]
  42. Moll PJW, Balicas L, Geshkenbein V, Blatter G, Karpinski J. 42.  et al. 2013. Nat. Mater. 12:134–38 [Google Scholar]
  43. Moll PJW, Balicas L, Zhu X, Wen H-H, Zhigadlo ND. 43.  et al. 2014. Phys. Rev. Lett. 113:186402 [Google Scholar]
  44. Koshelev A. 44.  2007. Phys. Rev. B 75:214513 [Google Scholar]
  45. Ooi S, Mochiku T, Hirata K. 45.  2002. Phys. Rev. Lett. 89:247002 [Google Scholar]
  46. Moll PJW, Kushwaha P, Nandi N, Schmidt B, Mackenzie AP. 46.  2016. Science 351:1061–64 [Google Scholar]
  47. Moll PJW, Zhu X, Cheng P, Wen H-H, Batlogg B. 47.  2014. Nat. Phys. 10:644–47 [Google Scholar]
  48. Rubanov S, Munroe PR. 48.  2004. J. Microsc. 214:213–21 [Google Scholar]
  49. Bachmann MD, Nair N, Flicker F, Ilan R, Meng T. 49.  et al. 2017. Sci. Adv. 3:e1602983 [Google Scholar]
  50. Harrison N, Moll PJW, Sebastian SE, Balicas L, Altarawneh MM. 50.  et al. 2013. Phys. Rev. B 88:241108 [Google Scholar]
  51. Moll PJW, Nair NL, Helm T, Potter AC, Kimchi I. 51.  et al. 2016. Nature 535:266–70 [Google Scholar]
  52. Moll PJW, Potter AC, Nair NL, Ramshaw B, Modic K. 52.  et al. 2016. Nat. Commun. 7:12492 [Google Scholar]
  53. Kato NI. 53.  2004. J. Electron Microsc. 53:451–58 [Google Scholar]
  54. Kato NI, Kohno Y, Saka H. 54.  1999. J. Vac. Sci. Technol. A 17:1201 [Google Scholar]
  55. Giannuzzi LA, Stevie FA. 55.  1999. Micron 30:197–204 [Google Scholar]
  56. Ziegler JF. 56.  2004. Nucl. Instrum. Methods Phys. Res. B 220:1027–36 [Google Scholar]
  57. Ziegler JF, Ziegler MD, Biersack JP. 57.  2010. Nucl. Inst. Methods Phys. Res. B 268:1818–23 [Google Scholar]
  58. Warburton PA, Fenton JC, Korsah M, Grovenor CRM. 58.  2006. Supercond. Sci. Technol. 19:S187–90 [Google Scholar]
  59. Cooper D, Ailliot C, Barnes J, Hartmann J, Salles P. 59.  et al. 2010. Ultramicroscopy 110:383–89 [Google Scholar]
  60. Llobet J, Sansa M, Borrisé X, Pérez-Murano F, Gerbolés M. 60.  2015. J. Micro/Nanolithogr. MEMS MOEMS 14:31207 [Google Scholar]
  61. Schilling A, Adams T, Bowman RM, Gregg JM. 61.  2007. Nanotechnology 18:35301 [Google Scholar]
  62. Mikkelsen A, Hilner E, Andersen J, Ghatnekar-Nilsson S, Montelius L, Zakharov A. 62.  2009. Nanotechnology 20:325304 [Google Scholar]
  63. Gamo K, Takakura N, Samoto N, Shimizu R, Namba S. 63.  1984. Jpn. J. Appl. Phys. 23:293–95 [Google Scholar]
  64. Lu MP, Song J, Lu MY, Chen MT, Gao Y. 64.  et al. 2009. Nano Lett 9:1223–27 [Google Scholar]
  65. Motayed A, Davydov AV, Vaudin MD, Levin I, Melngailis J, Mohammad SN. 65.  2006. J. Appl. Phys. 100:24306 [Google Scholar]
  66. De Teresa JM, Cárdoba R, Fernández-Pacheco A, Montero O, Strichovanec P, Ibarra MR. 66.  2009. J. Nanomater. 2009:936863 [Google Scholar]
  67. Fang J-Y, Qin S-Q, Zhang X-A, Liu D-Q, Chang S-L. 67.  2014. Chin. Phys. B 23:88111 [Google Scholar]
  68. Mulders JJL. 68.  2014. Appl. Phys. A 117:1697–1704 [Google Scholar]
  69. Reguer A, Bedu F, Tonneau D, Dallaporta H, Prestigiacomo M. 69.  et al. 2008. J. Vac. Sci. Technol. B 26:175–80 [Google Scholar]
  70. Van Dorp WF, Hagen CW. 70.  2008. J. Appl. Phys. 104:81301 [Google Scholar]
  71. Li W, Fenton JC, Wang Y, McComb DW, Warburton PA. 71.  2008. J. Appl. Phys. 104:93913 [Google Scholar]
  72. Dhakal P, McMahon G, Shepard S, Kirkpatrick T, Oh JI, Naughton MJ. 72.  2010. Appl. Phys. Lett. 96:262511 [Google Scholar]
  73. Guillamón I, Suderow H, Vieira S, Fernández-Pacheco A, Sesé J. 73.  et al. 2008. New J. Phys. 10:93005 [Google Scholar]
  74. Utke I, Hoffmann P, Melngailis J. 74.  2008. J. Vac. Sci. Technol. B 26:1197 [Google Scholar]
  75. Smith NS, Skoczylas WP, Kellogg SM, Kinion DE, Tesch PP. 75.  et al. 2006. J. Vac. Sci. Technol. B 24:2902 [Google Scholar]
  76. Hlawacek G, Gölzhäuser A. 76.  2016. Helium Ion Microscopy New York: Springer [Google Scholar]
  77. Kollmann H, Piao X, Esmann M, Becker SF, Hou D. 77.  et al. 2014. Nano Lett 14:4778–84 [Google Scholar]
  78. Kelley RD, Song K, Van Leer B, Wall D, Kwakman L. 78.  2013. Microsc. Microanal. 19:Suppl. 2862–63 [Google Scholar]
  79. Ward BW, Notte JA, Economou NP. 79.  2006. J. Vac. Sci. Technol. B 24:2871 [Google Scholar]
  80. Melli M, Polyakov A, Gargas D, Huynh C, Scipioni L. 80.  et al. 2013. Nano Lett 13:2687–91 [Google Scholar]
  81. Wang Y, Abb M, Boden SA, Aizpurua J, De Groot CH, Muskens OL. 81.  2013. Nano Lett 13:5647–53 [Google Scholar]
  82. Röder F, Hlawacek G, Wintz S, Hübner R, Bischoff L. 82.  et al. 2015. Sci. Rep. 5:16786 [Google Scholar]
  83. Cybart SA, Cho EY, Wong TJ, Wehlin BH, Ma MK. 83.  et al. 2015. Nat. Nanotechnol. 10:598–602 [Google Scholar]
  84. Smith DA, Joy DC, Rack PD. 84.  2010. Nanotechnology 21:175302 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-033117-054021
Loading
/content/journals/10.1146/annurev-conmatphys-033117-054021
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error