1932

Abstract

Recent research on the network modeling of complex systems has led to a convenient representation of numerous natural, social, and engineered systems that are now recognized as networks of interacting parts. Such systems can exhibit a wealth of phenomena that not only cannot be anticipated from merely examining their parts, as per the textbook definition of complexity, but also challenge intuition even when considered in the context of what is now known in network science. Here, we review the recent literature on two major classes of such phenomena that have far-reaching implications: () antagonistic responses to changes of states or parameters and () coexistence of seemingly incongruous behaviors or properties—both deriving from the collective and inherently decentralized nature of the dynamics. They include effects as diverse as negative compressibility in engineered materials, rescue interactions in biological networks, negative resistance in fluid networks, and the Braess paradox occurring across transport and supply networks. They also include remote synchronization, chimera states, and the converse of symmetry breaking in brain, power-grid, and oscillator networks as well as remote control in biological and bioinspired systems. By offering a unified view of these various scenarios, we suggest that they are representative of a yet broader class of unprecedented network phenomena that ought to be revealed and explained by future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-033117-054054
2018-03-10
2025-02-13
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/9/1/annurev-conmatphys-033117-054054.html?itemId=/content/journals/10.1146/annurev-conmatphys-033117-054054&mimeType=html&fmt=ahah

Literature Cited

  1. Pigou AC. 1.  1920. The Economics of Welfare London: Macmillan [Google Scholar]
  2. Wardrop JG. 2.  1952. Proc. Inst. Civil Eng. (Part II). 1:3325–62 [Google Scholar]
  3. Beckmann M, McGuire C, Winsten CB. 3.  1956. Studies in the Economics of Transportation New Haven, CT: Yale Univ. Press [Google Scholar]
  4. Braess D. 4.  1968. Unternehmensforschung 12:258–68 [Google Scholar]
  5. Braess D, Nagurney A, Wakolbinger T. 5.  2005. Transp. Sci. 39:4446–50 [Google Scholar]
  6. Roughgarden T. 6.  2005. Selfish Routing and the Price of Anarchy 174 Cambridge, MA: MIT Press [Google Scholar]
  7. Nash JF. 7.  1950. PNAS 36:148–49 [Google Scholar]
  8. Pecora LM, Carroll TL. 8.  1990. Phys. Rev. Lett. 64:821–24 [Google Scholar]
  9. Anderson PW. 9.  1972. Science 177:4047393–96 [Google Scholar]
  10. Watts DJ. 10.  2011. Everything Is Obvious Once You Know the Answer: How Common Sense Fails Us New York: Crown Bus. [Google Scholar]
  11. Cohen JE, Horowitz P. 11.  1991. Nature 352:6337699–701 [Google Scholar]
  12. Motter AE, Gulbahce N, Almaas E, Barabási A-L. 12.  2008. Mol. Syst. Biol. 4:1168 [Google Scholar]
  13. Edwards J, Palsson B. 13.  2000. PNAS 97:105528–33 [Google Scholar]
  14. Segrè D, Vitkup D, Church GM. 14.  2002. PNAS 99:2315112–17 [Google Scholar]
  15. Cornelius SP, Lee JS, Motter AE. 15.  2011. PNAS 108:83124–29 [Google Scholar]
  16. Motter AE. 16.  2010. BioEssays 32:3236–45 [Google Scholar]
  17. Chait R, Craney A, Kishony R. 17.  2007. Nature 446:7136668–71 [Google Scholar]
  18. Nicolaou ZG, Motter AE. 18.  2012. Nat. Mater. 11:7608–13 [Google Scholar]
  19. Nicolaou ZG, Motter AE. 19.  2013. J. Stat. Phys. 151:61162–74 [Google Scholar]
  20. Witthaut D, Timme M. 20.  2012. New J. Phys. 14:8083036 [Google Scholar]
  21. Coletta T, Jacquod P. 21.  2016. Phys. Rev. E 93:3032222 [Google Scholar]
  22. Filatrella G, Nielsen AH, Pedersen NF. 22.  2008. Eur. Phys. J. B 61:4485–91 [Google Scholar]
  23. Rohden M, Sorge A, Timme M, Witthaut D. 23.  2012. Phys. Rev. Lett. 109:6064101 [Google Scholar]
  24. Witthaut D, Timme M. 24.  2013. Eur. Phys. J. B 86:91–12 [Google Scholar]
  25. Motter AE, Myers SA, Anghel M, Nishikawa T. 25.  2013. Nat. Phys. 9:3191–97 [Google Scholar]
  26. Nishikawa T, Motter AE. 26.  2006. Phys. Rev. E 73:6065106 [Google Scholar]
  27. Pecora LM, Carroll TL. 27.  1998. Phys. Rev. Lett. 80:102109 [Google Scholar]
  28. Nishikawa T, Motter AE. 28.  2006. Phys. D 224:177–89 [Google Scholar]
  29. Schröder M, Mannattil M, Dutta D, Chakraborty S, Timme M. 29.  2015. Phys. Rev. Lett. 115:5054101 [Google Scholar]
  30. Schröder M, Chakraborty S, Witthaut D, Nagler J, Timme M. 30.  2016. Sci. Rep. 6:37142 [Google Scholar]
  31. Stilwell DJ, Bollt EM, Roberson DG. 31.  2006. SIAM J. Appl. Dyn. Syst. 5:1140–56 [Google Scholar]
  32. Chen L, Qiu C, Huang HB. 32.  2009. Phys. Rev. E 79:045101 [Google Scholar]
  33. Jeter R, Belykh I. 33.  2015. IEEE Trans. Circuits Syst. I: Regul. Pap. 62:51260–69 [Google Scholar]
  34. Nishikawa T, Motter AE. 34.  2010. PNAS 107:2310342–47 [Google Scholar]
  35. Cohen J, Luczak T, Newman C, Zhou Z-M. 35.  1990. Proc. R. Soc. Lond. B 240:1299607–27 [Google Scholar]
  36. Sahasrabudhe S, Motter AE. 36.  2011. Nat. Commun. 2:170 [Google Scholar]
  37. Rosenzweig ML. 37.  1971. Science 171:3969385–87 [Google Scholar]
  38. Cornelius SP, Kath WL, Motter AE. 38.  2013. Nat. Commun. 4:1942 [Google Scholar]
  39. Dubey P. 39.  1986. Math. Oper. Res. 11:11–8 [Google Scholar]
  40. Nagurney A. 40.  2010. Europhys. Lett. 91:448002 [Google Scholar]
  41. Fisk C. 41.  1979. Transp. Res. Part B: Methodol. 13:4305–9 [Google Scholar]
  42. Fujishige S, Goemans MX, Harks T, Peis B, Zenklusen R. 42.  2017. Math. Oper. Res. 42:3745–61 [Google Scholar]
  43. Steinberg R, Stone RE. 43.  1988. Transp. Sci. 22:4231–41 [Google Scholar]
  44. Smith M. 44.  1978. Transp. Res. 12:6419–22 [Google Scholar]
  45. Yang H, Bell MG. 45.  1998. Transp. Res. Part A: Policy Pract. 32:7539–45 [Google Scholar]
  46. Youn H, Gastner MT, Jeong H. 46.  2008. Phys. Rev. Lett. 101:12128701 [Google Scholar]
  47. Skinner B. 47.  2015. Phys. Rev. E 91:5052126 [Google Scholar]
  48. Solé-Ribalta A, Gómez S, Arenas A. 48.  2016. Phys. Rev. Lett. 116:10108701 [Google Scholar]
  49. Korilis YA, Lazar AA, Orda A. 49.  1999. J. Appl. Probab. 36:1211–22 [Google Scholar]
  50. Kameda H, Altman E, Kozawa T, Hosokawa Y. 50.  2000. IEEE Trans. Autom. Control 45:91687–91 [Google Scholar]
  51. Lepore DM, Barratt C, Schwartz PM. 51.  2011. J. Math. Chem. 49:2356–70 [Google Scholar]
  52. Blumsack S, Lave LB, Ilić M. 52.  2007. Energy J 28:473–100 [Google Scholar]
  53. Nagurney LS, Nagurney A. 53.  2016. Europhys. Lett. 115:228004 [Google Scholar]
  54. Calvert B, Keady G, Calvert B. 54.  1993. J. Aust. Math. Soc. Ser. B 35:1–22 [Google Scholar]
  55. Keady G. 55.  1995. Electron. Rep., Dep. Math., Univ. West. Aust Nedlands, Australia:
  56. André J. 56.  2010. Optimization of investment in gas networks PhD Thesis, Univ. Lille Nord Fr Lille, France: [Google Scholar]
  57. Ayala L, Blumsack S. 57.  2013. Oil Gas Facil 2:352–64 [Google Scholar]
  58. Pala M, Baltazar S, Liu P, Sellier H, Hackens B. 58.  et al. 2012. Phys. Rev. Lett. 108:7076802 [Google Scholar]
  59. Sousa A, Chaves A, Farias G, Peeters F. 59.  2013. Phys. Rev. B 88:24245417 [Google Scholar]
  60. Skardal PS, Taylor T, Sun J. 60.  2014. Phys. Rev. Lett. 113:14144101 [Google Scholar]
  61. Nishikawa T, Motter AE. 61.  2016. Phys. Rev. Lett. 117:11114101 [Google Scholar]
  62. Nishikawa T, Molnar F, Motter AE. 62.  2015. IFAC-PapersOnLine 48:181–6 [Google Scholar]
  63. Kuramoto Y. 63.  2002. Nonlinear Dynamics And Chaos: Where Do We Go From Here? J Hogan, A Champneys, B Krauskopf, M di Bernardo, E Wilson, et al., ch. 9 Boca Raton, FL: CRC [Google Scholar]
  64. Abrams DM, Strogatz SH. 64.  2004. Phys. Rev. Lett. 93:17174102 [Google Scholar]
  65. Rattenborg NC, Amlaner CJ, Lima SL. 65.  2000. Neurosci. Biobehav. Rev. 24:8817–42 [Google Scholar]
  66. Davidenko JM, Pertsov AV, Salomonsz R, Baxter W, Jalife J. 66.  1992. Nature 355:349–51 [Google Scholar]
  67. Kuramoto Y, Battogtokh D. 67.  2002. Nonlinear Phenom. Complex Syst. 5:4380–85 [Google Scholar]
  68. Kuramoto Y, Shima S-i. 68.  2003. Prog. Theor. Phys. Suppl. 150:115–25 [Google Scholar]
  69. Hagerstrom AM, Murphy TE, Roy R, Hövel P, Omelchenko I, Schöll E. 69.  2012. Nat. Phys. 8:9658–61 [Google Scholar]
  70. Tinsley MR, Nkomo S, Showalter K. 70.  2012. Nat. Phys. 8:9662–65 [Google Scholar]
  71. Martens EA, Thutupalli S, Fourrière A, Hallatschek O. 71.  2013. PNAS 110:2610563–67 [Google Scholar]
  72. Wolfrum M, Omel'chenko E. 72.  2011. Phys. Rev. E 84:1015201 [Google Scholar]
  73. Panaggio MJ, Abrams DM. 73.  2015. Nonlinearity 28:3R67 [Google Scholar]
  74. Cho Y, Nishikawa T, Motter AE. 74.  2017. Phys. Rev. Lett. 119:8084101 [Google Scholar]
  75. Suda Y, Okuda K. 75.  2015. Phys. Rev. E 92:6060901 [Google Scholar]
  76. Hart JD, Bansal K, Murphy TE, Roy R. 76.  2016. Chaos 26:9094801 [Google Scholar]
  77. Bick C, Ashwin P. 77.  2016. Nonlinearity 29:51468 [Google Scholar]
  78. Schmidt L, Schönleber K, Krischer K, García-Morales V. 78.  2014. Chaos 24:1013102 [Google Scholar]
  79. Nicolaou Z, Riecke H, Motter AE. 79.  2017. Phys. Rev. Lett. 119:24244101 [Google Scholar]
  80. Nicosia V, Valencia M, Chavez M, Díaz-Guilera A, Latora V. 80.  2013. Phys. Rev. Lett. 110:17174102 [Google Scholar]
  81. Zhang L, Motter AE, Nishikawa T. 81.  2017. Phys. Rev. Lett. 118:17174102 [Google Scholar]
  82. Winful HG, Rahman L. 82.  1990. Phys. Rev. Lett. 65:131575 [Google Scholar]
  83. Fischer I, Vicente R, Buldú JM, Peil M, Mirasso CR. 83.  et al. 2006. Phys. Rev. Lett. 97:12123902 [Google Scholar]
  84. MacArthur BD, Sánchez-García RJ, Anderson JW. 84.  2008. Discret. Appl. Math. 156:183525–31 [Google Scholar]
  85. Pecora LM, Sorrentino F, Hagerstrom AM, Murphy TE, Roy R. 85.  2014. Nat. Commun. 5:4079 [Google Scholar]
  86. Hopfield JJ. 86.  1982. PNAS 79:82554–58 [Google Scholar]
  87. Cardelli L, Hernansaiz-Ballesteros R, Dalchau N, Csikász-Nagy A. 87.  2017. PLOS Comput. Biol. 13:1e1005100 [Google Scholar]
  88. Klinglmayr J, Bettstetter C. 88.  2012. ACM Trans. Auton. Adapt. Syst. 7:330 [Google Scholar]
  89. Klinglmayr J, Kirst C, Bettstetter C, Timme M. 89.  2012. New J. Phys. 14:7073031 [Google Scholar]
  90. Kirst C. 90.  2012. Synchronization, neuronal excitability, and information flow in networks of neuronal oscillators PhD Thesis, Univ. Göttingen, Göttingen Germany: [Google Scholar]
  91. Kirst C, Timme M, Battaglia D. 91.  2016. Nat. Commun. 7:11061 [Google Scholar]
  92. Atay FM, Jost J, Wende A. 92.  2004. Phys. Rev. Lett. 92:14144101 [Google Scholar]
  93. Ernst U, Pawelzik K, Geisel T. 93.  1995. Phys. Rev. Lett. 74:91570 [Google Scholar]
  94. Timme M, Wolf F, Geisel T. 94.  2002. Phys. Rev. Lett. 89:15154105 [Google Scholar]
  95. Meng JH, Riecke H. 95.  2016. arXiv1612.06881
  96. Clusella P, Politi A. 96.  2017. Phys. Rev. E 95:062221 [Google Scholar]
  97. Amro RM, Lindner B, Neiman AB. 97.  2015. Phys. Rev. Lett. 115:3034101 [Google Scholar]
  98. Achlioptas D, D'souza RM, Spencer J. 98.  2009. Science 323:59201453–55 [Google Scholar]
  99. da Costa RA, Dorogovtsev SN, Goltsev AV, Mendes JFF. 99.  2010. Phys. Rev. Lett. 105:25255701 [Google Scholar]
  100. Riordan O, Warnke L. 100.  2011. Science 333:6040322–24 [Google Scholar]
  101. Grassberger P, Christensen C, Bizhani G, Son S-W, Paczuski M. 101.  2011. Phys. Rev. Lett. 106:22225701 [Google Scholar]
  102. Nagler J, Levina A, Timme M. 102.  2011. Nat. Phys. 7:3265–70 [Google Scholar]
  103. Vlasov V, Zou Y, Pereira T. 103.  2015. Phys. Rev. E 92:1012904 [Google Scholar]
  104. Gómez-Gardeñes J, Gómez S, Arenas A, Moreno Y. 104.  2011. Phys. Rev. Lett. 106:12128701 [Google Scholar]
  105. Leyva I, Sevilla-Escoboza R, Buldú J, Sendina-Nadal I, Gómez-Gardeñes J. 105.  et al. 2012. Phys. Rev. Lett. 108:16168702 [Google Scholar]
  106. Zou Y, Pereira T, Small M, Liu Z, Kurths J. 106.  2014. Phys. Rev. Lett. 112:11114102 [Google Scholar]
  107. Horgan J. 107.  1995. Sci. Am. 272:6104–9 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-033117-054054
Loading
/content/journals/10.1146/annurev-conmatphys-033117-054054
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error