1932

Abstract

Classical and quantum electronic circuits provide ideal platforms to investigate stochastic thermodynamics, and they have served as a stepping stone to realize Maxwell's Demons with highly controllable protocols. In this article, we first review the central thermal phenomena in quantum nanostructures. Thermometry and basic refrigeration methods are described as enabling tools for thermodynamics experiments. Next, we discuss the role of information in thermodynamics that leads to the concept of Maxwell's Demon. Various Maxwell's Demons realized in single-electron circuits over the past couple of years are described. Currently, true quantum thermodynamics in superconducting circuits is a focus of attention, and we end the review by discussing the ideas and first experiments in this exciting area of research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-033117-054120
2019-03-10
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/10/1/annurev-conmatphys-033117-054120.html?itemId=/content/journals/10.1146/annurev-conmatphys-033117-054120&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Bochkov G, Kuzovlev YE 1977. Zh. Eksp. Teor. Fiz. 72:238–43
    [Google Scholar]
  2. 2.  Bochkov G, Kuzovlev YE 1981. Phys. A: Stat. Mech. Appl. 106:443–79
    [Google Scholar]
  3. 3.  Evans DJ, Cohen EGD, Morriss GP 1993. Phys. Rev. Lett. 71:2401–4
    [Google Scholar]
  4. 4.  Gallavotti G, Cohen EGD 1995. Phys. Rev. Lett. 74:2694–97
    [Google Scholar]
  5. 5.  Jarzynski C 1997. Phys. Rev. Lett. 78:2690–93
    [Google Scholar]
  6. 6.  Crooks GE 1999. Phys. Rev. E 60:2721–26
    [Google Scholar]
  7. 7.  Seifert U 2005. Phys. Rev. Lett. 95:040602
    [Google Scholar]
  8. 8.  Seifert U 2012. Rep. Prog. Phys. 75:126001
    [Google Scholar]
  9. 9.  Sagawa T, Ueda M 2008. Phys. Rev. Lett. 100:080403
    [Google Scholar]
  10. 10.  Sagawa T, Ueda M 2010. Phys. Rev. Lett. 104:090602
    [Google Scholar]
  11. 11.  Toyabe S, Sagawa T, Ueda M, Muneyuki E, Sano M 2010. Nat. Phys. 6:988–92
    [Google Scholar]
  12. 12.  Saira OP, Yoon Y, Tanttu T, Möttönen M, Averin DV, Pekola JP 2012. Phys. Rev. Lett. 109:180601
    [Google Scholar]
  13. 13.  Koski JV, Sagawa T, Saira OP, Yoon Y, Kutvonen A et al. 2013. Nat. Phys. 9:644–48
    [Google Scholar]
  14. 14.  Bérut A, Arakelyan A, Petrosyan A, Ciliberto S, Dillenschneider R, Lutz E 2012. Nature 483:187–89
    [Google Scholar]
  15. 15.  Orlov AO, Lent CS, Thorpe CC, Boechler GP, Snider GL 2012. Jpn. J. Appl. Phys. 51:06FE10
    [Google Scholar]
  16. 16.  Jun Y, Gavrilov M, Bechhoefer J 2014. Phys. Rev. Lett. 113:190601
    [Google Scholar]
  17. 17.  Koski JV, Maisi VF, Sagawa T, Pekola JP 2014. Phys. Rev. Lett. 113:030601
    [Google Scholar]
  18. 18.  Koski JV, Maisi VF, Pekola JP, Averin DV 2014. PNAS 111:13786–89
    [Google Scholar]
  19. 19.  Roldán E, Martínez IA, Parrondo JMR, Petrov D 2014. Nat. Phys. 10:457–61
    [Google Scholar]
  20. 20.  Koski JV, Kutvonen A, Khaymovich IM, Ala-Nissilä T, Pekola JP 2015. Phys. Rev. Lett. 115:260602
    [Google Scholar]
  21. 21.  Khaymovich IM, Koski JV, Saira OP, Kravtsov VE, Pekola JP 2015. Nat. Comm. 6:7010
    [Google Scholar]
  22. 22.  Pekola JP 2015. Nat. Phys. 11:118
    [Google Scholar]
  23. 23.  Hong J, Lambson B, Dhuey S, Bokor J 2016. Science Adv. 2:e1501492
    [Google Scholar]
  24. 24.  Vidrighin MD, Dahlsten O, Barbieri M, Kim MS, Vedral V, Walmsley IA 2016. Phys. Rev. Lett. 116:050401
    [Google Scholar]
  25. 25.  Gavrilov M 2017. Experiments on the Thermodynamics of Information Processing M Gavrilov8396 Cham, Switz.: Springer
    [Google Scholar]
  26. 26.  Collin D, Ritort F, Jarzynski C, Smith SB, Tinoco I Jr., Bustamante C 2005. Nature 437:231–34
    [Google Scholar]
  27. 27.  Alemany A, Ribezzi M, Ritort F 2011. Nonequilibrium Statistical Physics Today: Proceedings of the 11th Granada Seminar on Computational and Statistical Physics PL Garrido, J Marro, F de los SantosAIP Conf. Proc. 1332:96 Melville, NY: AIP
    [Google Scholar]
  28. 28.  Alemany A, Ribezzi-Crivellari M, Ritort F 2015. New J. Phys. 17:075009
    [Google Scholar]
  29. 29.  Rowell JM, Tsui DC 1976. Phys. Rev. B 14:2456–63
    [Google Scholar]
  30. 30.  Feshchenko AV, Casparis L, Khaymovich IM, Maradan D, Saira OP et al. 2015. Phys. Rev. Appl. 4:034001
    [Google Scholar]
  31. 31.  Nahum M, Eiles TM, Martinis JM 1994. Appl. Phys. Lett. 65:3123–25
    [Google Scholar]
  32. 32.  Leivo MM, Pekola JP, Averin DV 1996. Appl. Phys. Lett. 68:1996–98
    [Google Scholar]
  33. 33.  Clark AM, Miller NA, Williams A, Ruggiero ST, Hilton GC et al. 2005. Appl. Phys. Lett. 86:173508
    [Google Scholar]
  34. 34.  Giazotto F, Heikkilä TT, Luukanen A, Savin AM, Pekola JP 2006. Rev. Mod. Phys. 78:217–74
    [Google Scholar]
  35. 35.  Lebowitz JL, Spohn H 1999. J. Stat. Phys. 95:333–65
    [Google Scholar]
  36. 36.  Shargel BH, Chou T 2009. J. Stat. Phys. 137:165–88
    [Google Scholar]
  37. 37.  Schuler S, Speck T, Tietz C, Wrachtrup J, Seifert U 2005. Phys. Rev. Lett. 94:180602
    [Google Scholar]
  38. 38.  Tietz C, Schuler S, Speck T, Seifert U, Wrachtrup J 2006. Phys. Rev. Lett. 97:050602
    [Google Scholar]
  39. 39.  Mandaiya A, Khaymovich IM 2018. Relations between long-time and finite-time fluctuation theorems in two-level system under periodic drive. In preparation
  40. 40.  Chetrite R, Gupta S 2011. J. Stat. Phys. 143:543–48
    [Google Scholar]
  41. 41.  Neri I, Roldán E, Jülicher F 2017. Phys. Rev. X 7:011019
    [Google Scholar]
  42. 42.  Pigolotti S, Neri I, Roldán E, Jülicher F 2017. Phys. Rev. Lett. 119:140604
    [Google Scholar]
  43. 43.  Fujisawa T, Hayashi T, Tomita R, Hirayama Y 2006. Science 312:1634–36
    [Google Scholar]
  44. 44.  Küng B, Rössler C, Beck M, Marthaler M, Golubev DS et al. 2012. Phys. Rev. X 2:011001
    [Google Scholar]
  45. 45.  Singh S, Roldán É, Neri I, Khaymovich IM, Golubev DS 2017. Phys. Rev. Lett. Submitted. arXiv:1712.01693
    [Google Scholar]
  46. 46.  Leff H, Rex AF 2002. Maxwell's Demon 2 Entropy, Classical and Quantum Information, Computing Boca Raton: CRC
    [Google Scholar]
  47. 47.  Maruyama K, Nori F, Vedral V 2009. Rev. Mod. Phys. 81:1
    [Google Scholar]
  48. 48.  Parrondo JM, Horowitz JM, Sagawa T 2015. Nat. Phys. 11:131–39
    [Google Scholar]
  49. 49.  Landauer R 1961. IBM J. Res. Develop. 5:183–91
    [Google Scholar]
  50. 50.  Landauer R 1988. Nature 335:779–84
    [Google Scholar]
  51. 51.  Bergli J, Galperin YM, Kopnin N 2013. Phys. Rev. E 88:062139
    [Google Scholar]
  52. 52.  Sørdal V, Bergli J, Galperin Y 2017. Phys. Rev. E 95:062129
    [Google Scholar]
  53. 53.  Walldorf N, Jauho AP, Kaasbjerg K 2017. Phys. Rev. B 96:115415
    [Google Scholar]
  54. 54.  Averin DV, Pekola JP 2017. Phys. Stat. Sol. B 254:1600677
    [Google Scholar]
  55. 55.  Chida K, Nishiguchi K, Yamahata G, Tanaka H, Fujiwara A 2015. Appl. Phys. Lett. 107:073110
    [Google Scholar]
  56. 56.  Wagner T, Strasberg P, Bayer JC, Rugeramigabo EP, Brandes T, Haug RJ 2016. Nat. Nanotech. 12:218–22
    [Google Scholar]
  57. 57.  Singh S, Peltonen JT, Khaymovich IM, Koski JV, Flindt C, Pekola JP 2016. Phys. Rev. B 94:241407
    [Google Scholar]
  58. 58.  Strasberg P, Schaller G, Brandes T, Esposito M 2013. Phys. Rev. Lett. 110:040601
    [Google Scholar]
  59. 59.  Horowitz JM, Esposito M 2014. Phys. Rev. X 4:031015
    [Google Scholar]
  60. 60.  Shiraishi N, Ito S, Kawaguchi K, Sagawa T 2015. New J. Phys. 17:045012
    [Google Scholar]
  61. 61.  Sánchez R, Büttiker M 2011. Phys. Rev. B 83:085428
    [Google Scholar]
  62. 62.  Sánchez R, Büttiker M 2012. Europhys. Lett. 100:47008
    [Google Scholar]
  63. 63.  Thierschmann H, Sánchez R, Sothmann B, Arnold F, Heyn C et al. 2015. Nat. Nanotech. 10:854–58
    [Google Scholar]
  64. 64.  Thierschmann H, Arnold F, Mittermüller M, Maier L, Heyn C et al. 2015. New J. Phys. 17:113003
    [Google Scholar]
  65. 65.  Pekola JP, Koski JV, Averin DV 2014. Phys. Rev. B 89:081309(R)
    [Google Scholar]
  66. 66.  Feshchenko AV, Koski JV, Pekola JP 2014. Phys. Rev. B 90:201407(R)
    [Google Scholar]
  67. 67.  Esposito M, Harbola U, Mukamel S 2009. Rev. Mod. Phys. 81:1665
    [Google Scholar]
  68. 68.  Campisi M, Hänggi P, Talkner P 2011. Rev. Mod. Phys. 83:771
    [Google Scholar]
  69. 69.  Dalibard J, Castin Y, Mølmer K 1992. Phys. Rev. Lett. 68:580–83
    [Google Scholar]
  70. 70.  Hekking FWJ, Pekola JP 2013. Phys. Rev. Lett. 111:093602
    [Google Scholar]
  71. 71.  Horowitz JM, Parrondo JMR 2013. New J. Phys. 15:085028
    [Google Scholar]
  72. 72.  Suomela S, Kutvonen A, Ala-Nissila T 2016. Phys. Rev. E 93:062106
    [Google Scholar]
  73. 73.  Pekola JP, Suomela S, Galperin YM 2016. J. Low Temp. Phys. 184:1015–29
    [Google Scholar]
  74. 74.  Pekola JP, Masuyama Y, Nakamura Y, Bergli J, Galperin YM 2015. Phys. Rev. E 91:062109
    [Google Scholar]
  75. 75.  Kupiainen A, Muratore-Ginanneschi P, Pekola J, Schwieger K 2016. Phys. Rev. E 94:062127
    [Google Scholar]
  76. 76.  Pekola JP, Solinas P, Shnirman A, Averin DV 2013. New J. Phys. 15:115006
    [Google Scholar]
  77. 77.  Partanen M, Yen Tan K, Masuda S, Govenius J, Lake RE et al. 2017. Sci. Rep. 8:6325
    [Google Scholar]
  78. 78.  Ronzani A, Karimi B, Senior J, Chang YC, Peltonen JT 2018. Nat. Phys. 14:991
    [Google Scholar]
  79. 79.  Gasparinetti S, Viisanen KL, Saira OP, Faivre T, Arzeo M et al. 2015. Phys. Rev. Appl. 3:014007
    [Google Scholar]
  80. 80.  Zgirski M, Foltyn M, Savin A, Meschke M, Pekola J 2018. Phys. Rev. Appl. 10:044068
    [Google Scholar]
  81. 81.  Wang L, Saira OP, Pekola J 2018. Appl. Phys. Lett. 112:013105
    [Google Scholar]
  82. 82.  Kosloff R, Levy A 2014. Annu. Rev. Phys. Chem. 65:365–93
    [Google Scholar]
  83. 83.  Alicki R 1979. J. Phys. A: Math. Gen. 12:L103
    [Google Scholar]
  84. 84.  Campisi M, Fazio R 2016. Nat. Comm. 7:11895
    [Google Scholar]
  85. 85.  Hofer PP, Souquet JR, Clerk AA 2016. Phys. Rev. B 93:041418
    [Google Scholar]
  86. 86.  Scully MO, Zubairy MS, Agarwal GS, Walther H 2003. Science 299:862–64
    [Google Scholar]
  87. 87.  Quan HT, Liu Y, Sun CP, Nori F 2007. Phys. Rev. E 76:031105
    [Google Scholar]
  88. 88.  Marchegiani G, Virtanen P, Giazotto F, Campisi M 2016. Phys. Rev. Appl. 6:054014
    [Google Scholar]
  89. 89.  Uzdin R, Levy A, Kosloff R 2015. Phys. Rev. X 5:031044
    [Google Scholar]
  90. 90.  Campisi M, Pekola J, Fazio R 2017. New J. Phys. 19:053027
    [Google Scholar]
  91. 91.  Abah O, Lutz E 2016. Europhys. Lett. 113:60002
    [Google Scholar]
  92. 92.  Brandner K, Seifert U 2016. Phys. Rev. E 93:062134
    [Google Scholar]
  93. 93.  Niskanen AO, Nakamura Y, Pekola JP 2007. Phys. Rev. B 76:174523
    [Google Scholar]
  94. 94.  Hofer PP, Perarnau-Llobet M, Brask JB, Silva R, Huber M, Brunner N 2016. Phys. Rev. B 94:235420
    [Google Scholar]
  95. 95.  Karimi B, Pekola JP 2016. Phys. Rev. B 94:184503
    [Google Scholar]
  96. 96.  Karimi B, Pekola JP 2017. Phys. Rev. B 96:115408
    [Google Scholar]
  97. 97.  Roßnagel J, Dawkins ST, Tolazzi KN, Abah O, Lutz E et al. 2016. Science 352:325–29
    [Google Scholar]
  98. 98.  Campisi M 2014. J. Phys. A: Math. Theor. 47:245001
    [Google Scholar]
  99. 98a.  Ptaszynski K 2018. Phys. Rev. B 98:085425
    [Google Scholar]
  100. 99.  Breuer H, Petruccione F 2002. The Theory of Open Quantum Systems New York: Oxford Univ. Press
    [Google Scholar]
  101. 100.  Pekola JP, Golubev DS, Averin DV 2016. Phys. Rev. B 93:024501
    [Google Scholar]
  102. 101.  Meschke M, Guichard W, Pekola JP 2006. Nature 444:187–90
    [Google Scholar]
  103. 102.  Cottet N, Jezouin S, Bretheau L, Campagne-Ibarcq P, Ficheux Q et al. 2017. PNAS 114:7561–64
    [Google Scholar]
  104. 103.  Masuyama Y, Funo K, Murashita Y, Noguchi A, Kono S et al. 2018. Nat. Comm. 9:1291
    [Google Scholar]
  105. 104.  Naghiloo M, Alonso J, Romito A, Lutz E, Murch K 2018. Phys. Rep. Lett. 121:030604
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-033117-054120
Loading
/content/journals/10.1146/annurev-conmatphys-033117-054120
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error