1932

Abstract

FeSe is a fascinating superconducting material at the frontier of research in condensed matter physics. Here, we provide an overview of the current understanding of the electronic structure of FeSe, focusing in particular on its low-energy electronic structure as determined from angle-resolved photoemission spectroscopy, quantum oscillations, and magnetotransport measurements of single-crystal samples. We discuss the unique place of FeSe among iron-based superconductors, as it is a multiband system exhibiting strong orbitally dependent electronic correlations and unusually small Fermi surfaces and is prone to different electronic instabilities. We pay particular attention to the evolution of the electronic structure that accompanies the tetragonal-orthorhombic structural distortion of the lattice around 90 K, which stabilizes a unique nematic electronic state. Finally, we discuss how the multiband multiorbital nematic electronic structure impacts our understanding of the superconductivity, and show that the tunability of the nematic state with chemical and physical pressure helps to disentangle the role of different competing interactions relevant for enhancing superconductivity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-033117-054137
2018-03-10
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/9/1/annurev-conmatphys-033117-054137.html?itemId=/content/journals/10.1146/annurev-conmatphys-033117-054137&mimeType=html&fmt=ahah

Literature Cited

  1. Kamihara Y, Watanabe T, Hirano M, Hosono H. 1.  2008. J. Am. Chem. Soc. 130:3296 [Google Scholar]
  2. Hsu FC, Luo JY, Yeh KW, Chen TK, Huang TW. 2.  et al. 2008. PNAS 105:14262–64 [Google Scholar]
  3. Medvedev S, McQueen TM, Troyan IA, Palasyuk T, Eremets MI. 3.  et al. 2009. Nat. Mater. 8:630 [Google Scholar]
  4. Lei B, Cui J, Xiang Z, Shang C, Wang N. 4.  et al. 2016. Phys. Rev. Lett. 116:077002 [Google Scholar]
  5. Sun H, Woodruff DN, Cassidy SJ, Allcroft GM, Sedlmaier SJ. 5.  et al. 2015. Inorg. Chem. 54:1958–64 [Google Scholar]
  6. Burrard-Lucas M, Free DG, Sedlmaier SJ, Wright JD, Cassidy SJ. 6.  et al. 2013. Nat. Mater. 12:15 [Google Scholar]
  7. Qing-Yan W, Zhi L, Wen-Hao Z, Zuo-Cheng Z, Jin-Song Z. 7.  et al. 2012. Chin. Phys. Lett. 29:037402 [Google Scholar]
  8. Wang Z, Liu C, Liu Y, Wang J. 8.  2017. J. Phys.: Condens. Matter 29:153001 [Google Scholar]
  9. Böhmer AE, Hardy F, Eilers F, Ernst D, Adelmann P. 9.  et al. 2013. Phys. Rev. B 87:180505 [Google Scholar]
  10. Chareev D, Osadchii E, Kuzmicheva T, Lin JY, Kuzmichev S. 10.  et al. 2013. CrystEngComm 15:1989 [Google Scholar]
  11. Böhmer AE, Taufour V, Straszheim WE, Wolf T, Canfield PC. 11.  2016. Phys. Rev. B 94:024526 [Google Scholar]
  12. Watson MD, Kim TK, Haghighirad AA, Davies NR, McCollam A. 12.  et al. 2015.a Phys. Rev. B 91:155106 [Google Scholar]
  13. Watson MD, Kim TK, Rhodes LC, Eschrig M, Hoesch M. 13.  et al. 2016. Phys. Rev. B 94:201107 [Google Scholar]
  14. Rhodes LC, Watson MD, Haghighirad AA, Eschrig M, Kim TK. 14.  2017. Phys. Rev. B 95:195111 [Google Scholar]
  15. Gunnarsson O, Calandra M, Han JE. 15.  2003. Rev. Mod. Phys. 75:1085 [Google Scholar]
  16. Si Q, Rong Y, Elihu A. 16.  2017. Nat. Rev. Mat. 1:16017 [Google Scholar]
  17. McQueen TM, Williams AJ, Stephens PW, Tao J, Zhu Y. 17.  et al. 2009. Phys. Rev. Lett. 103:057002 [Google Scholar]
  18. Khasanov R, Bendele M, Conder K, Keller H, Pomjakushina E, Pomjakushin V. 18.  2010. New J. Phys. 12:073024 [Google Scholar]
  19. Chubukov AV, Fernandes RM, Schmalian J. 19.  2015. Phys. Rev. B 91:201105 [Google Scholar]
  20. Fernandes RM, Chubukov AV, Schmalian J. 20.  2014. Nat. Phys. 10:97 [Google Scholar]
  21. Onari S, Yamakawa Y, Kontani H. 21.  2016. Phys. Rev. Lett. 116:227001 [Google Scholar]
  22. Wang F, Kivelson SA, Lee DH. 22.  2015. Nat. Phys. 11:959 [Google Scholar]
  23. Tanatar MA, Böhmer AE, Timmons EI, Schütt M, Drachuck G. 23.  et al. 2016. Phys. Rev. Lett. 117:127001 [Google Scholar]
  24. Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T. 24.  et al. 2014. PNAS 111:16309 [Google Scholar]
  25. Sprau PO, Kostin A, Kreisel A, Böhmer AE, Taufour V. 25.  et al. 2016. Science 357:634675–80 [Google Scholar]
  26. Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y. 26.  et al. 2016. PNAS 113:8139 [Google Scholar]
  27. Pomeranchuk II. 27.  1959. JETP 8:361 [Google Scholar]
  28. Massat P, Farina D, Paul I, Karlsson S, Strobel P. 28.  et al. 2016. PNAS 113:9177 [Google Scholar]
  29. Wang Q, Shen Y, Pan B, Hao Y, Ma M. 29.  et al. 2016. Nat. Mater. 15:159 [Google Scholar]
  30. Glasbrenner JK, Mazin II, Jeschke HO, Hirschfeld P, Fernandes RM, Valentí R. 30.  2015. Nat. Phys. 11:953 [Google Scholar]
  31. Chubukov AV, Khodas M, Fernandes RM. 31.  2016. Phys. Rev. X 6:041045 [Google Scholar]
  32. Xu HC, Niu XH, Xu DF, Jiang J, Yao Q. 32.  et al. 2016. Phys. Rev. Lett. 117:157003 [Google Scholar]
  33. Wang Y, Berlijn T, Hirschfeld PJ, Scalapino DJ, Maier TA. 33.  2015. Phys. Rev. Lett. 114:107002 [Google Scholar]
  34. Tomić M, Jeschke HO, Valentí R. 34.  2014. Phys. Rev. B 90:195121 [Google Scholar]
  35. Fedorov A, Yaresko A, Kim TK, Kushnirenko Y, Haubold E. 35.  et al. 2016. Sci. Rep. 6:36834 [Google Scholar]
  36. Borisenko SV, Evtushinsky DV, Liu ZH, Morozov I, Kappenberger R. 36.  et al. 2016. Nat. Phys. 12:311–17 [Google Scholar]
  37. Brouet V, Jensen MF, Lin PH, Taleb-Ibrahimi A, Le Fèvre P. 37.  et al. 2012. Phys. Rev. B 86:075123 [Google Scholar]
  38. Moreschini L, Lin PH, Lin CH, Ku W, Innocenti D. 38.  et al. 2014. Phys. Rev. Lett. 112:087602 [Google Scholar]
  39. Pustovit YV, Kordyuk AA. 39.  2016. Low Temp. Phys. 42:995 [Google Scholar]
  40. Liu X, Zhao L, He S, He J, Liu D. 40.  et al. 2015. J. Phys. Condens. Matter 27:183201 [Google Scholar]
  41. Huang D, Hoffman JE. 41.  2017. Annu. Rev. Condens. Matter Phys. 8:311–36 [Google Scholar]
  42. Richard P, Sato T, Nakayama K, Takahashi T, Ding H. 42.  2011. Rep. Prog. Phys. 74:124512 [Google Scholar]
  43. Kordyuk AA. 43.  2012. Low Temp. Phys. 38:888 [Google Scholar]
  44. Richard P, Qian T, Ding H. 44.  2015. J. Phys.: Condens. Matter 27:293203 [Google Scholar]
  45. van Roekeghem A, Richard P, Ding H, Biermann S. 45.  2016. C. R. Phys. 17:140 [Google Scholar]
  46. Maletz J, Zabolotnyy VB, Evtushinsky DV, Thirupathaiah S, Wolter AUB. 46.  et al. 2014. Phys. Rev. B 89:220506 [Google Scholar]
  47. Fernandes RM, Vafek O. 47.  2014. Phys. Rev. B 90:214514 [Google Scholar]
  48. Watson MD, Haghighirad AA, Takita H, Mansur W, Iwasawa H. 48.  et al. 2017. J. Phys. Soc. Jpn. 86:053703 [Google Scholar]
  49. Shimojima T, Suzuki Y, Sonobe T, Nakamura A, Sakano M. 49.  et al. 2014. Phys. Rev. B 90:121111 [Google Scholar]
  50. Suzuki Y, Shimojima T, Sonobe T, Nakamura A, Sakano M. 50.  et al. 2015. Phys. Rev. B 92:205117 [Google Scholar]
  51. Tan S, Zhang Y, Xia M, Ye Z, Chen F. 51.  et al. 2013. Nat. Mater. 12:634–40 [Google Scholar]
  52. Nakayama K, Miyata Y, Phan GN, Sato T, Tanabe Y. 52.  et al. 2014. Phys. Rev. Lett. 113:237001 [Google Scholar]
  53. Fanfarillo L, Mansart J, Toulemonde P, Cercellier H, Le Fèvre P. 53.  et al. 2016. Phys. Rev. B 94:155138 [Google Scholar]
  54. Zhang Y, Yi M, Liu ZK, Li W, Lee JJ. 54.  et al. 2016. Phys. Rev. B 94:115153 [Google Scholar]
  55. Watson MD, Yamashita T, Kasahara S, Knafo W, Nardone M. 55.  et al. 2015. Phys. Rev. Lett. 115:027006 [Google Scholar]
  56. Kreisel A, Mukherjee S, Hirschfeld PJ, Andersen BM. 56.  2015. Phys. Rev. B 92:224515 [Google Scholar]
  57. Jiang K, Hu J, Ding H, Wang Z. 57.  2016. Phys. Rev. B 93:115138 [Google Scholar]
  58. Yi L, Xian-Xin W, Jiang-Ping H. 58.  2015. Chin. Phys. Lett. 32:117402 [Google Scholar]
  59. Zhang P, Qian T, Richard P, Wang XP, Miao H. 59.  et al. 2015. Phys. Rev. B 91:214503 [Google Scholar]
  60. Scherer DD, Jacko AC, Friedrich C, Şaşoğlu E, Blügel S. 60.  et al. 2017. Phys. Rev. B 95:094504 [Google Scholar]
  61. Böhmer AE, Arai T, Hardy F, Hattori T, Iye T. 61.  et al. 2015. Phys. Rev. Lett. 114:027001 [Google Scholar]
  62. Watson MD, Backes S, Haghighirad AA, Hoesch M, Kim TK. 62.  et al. 2017. Phys. Rev. B 95:081106 [Google Scholar]
  63. Evtushinsky DV, Aichhorn M, Sassa Y, Liu ZH, Maletz J. 63.  et al. 2016. arXiv1612.02313
  64. Terashima T, Kikugawa N, Kiswandhi A, Choi ES, Brooks JS. 64.  et al. 2014. Phys. Rev. B 90:144517 [Google Scholar]
  65. Audouard A, Duc F, Drigo L, Toulemonde P, Karlsson S. 65.  et al. 2015. Europhys. Lett. 109:27003 [Google Scholar]
  66. Coldea AI, Blake SF, Kasahara S, Haghighirad AA, Watson MD. 66.  et al. 2016.arXiv1611.07424
  67. Reiss P, Watson MD, Kim TK, Haghighirad AA, Woodruff DN, Bruma M. 67.  et al. 2017. Phys. Rev. B 96:121103R) [Google Scholar]
  68. Coldea AI, Fletcher JD, Carrington A, Analytis JG, Bangura AF. 68.  et al. 2008. Phys. Rev. Lett. 101:216402 [Google Scholar]
  69. Putzke C, Coldea AI, Guillamón I, Vignolles D, McCollam A. 69.  et al. 2012. Phys. Rev. Lett. 108:047002 [Google Scholar]
  70. Huynh KK, Tanabe Y, Urata T, Oguro H, Heguri S. 70.  et al. 2014. Phys. Rev. B 90:144516 [Google Scholar]
  71. Sun Y, Pyon S, Tamegai T. 71.  2016.a Phys. Rev. B 93:104502 [Google Scholar]
  72. Tan SY, Fang Y, Xie DH, Feng W, Wen CHP. 72.  et al. 2016. Phys. Rev. B 93:104513 [Google Scholar]
  73. Ovchenkov YA, Chareev DA, Kulbachinskii VA, Kytin VG, Presnov DE. 73.  et al. 2017. Supercond. Sci. Technol. 30:035017 [Google Scholar]
  74. Ong NP. 74.  1991. Phys. Rev. B 43:193 [Google Scholar]
  75. Luo CW, Cheng PC, Wang SH, Chiang JC, Lin J. 75.  et al. 2017. NPJ Quantum Mat 2:32 [Google Scholar]
  76. Yin ZP, Haule K, Kotliar G. 76.  2011. Nat. Mater. 10:932–35 [Google Scholar]
  77. Lanatà N, Strand HUR, Giovannetti G, Hellsing B, de' Medici L, Capone M. 77.  2013. Phys. Rev. B 87:045122 [Google Scholar]
  78. Yi M, Liu Z, Zhang Y, Yu R, Zhu J. 78.  et al. 2015. Nat. Comm. 6:7777 [Google Scholar]
  79. Tamai A, Ganin AY, Rozbicki E, Bacsa J, Meevasana W. 79.  et al. 2010. Phys. Rev. Lett. 104:097002 [Google Scholar]
  80. Liu ZK, Yi M, Zhang Y, Hu J, Yu R. 80.  et al. 2015. Phys. Rev. B 92:235138 [Google Scholar]
  81. Miao J, Niu XH, Xu DF, Yao Q, Chen QY. 81.  et al. 2017. Phys. Rev. B 95:205127 [Google Scholar]
  82. Shishido H, Bangura AF, Coldea AI, Tonegawa S, Hashimoto K. 82.  et al. 2010. Phys. Rev. Lett. 104:1 [Google Scholar]
  83. Terashima T, Kurita N, Tomita M, Kihou K, Lee CH. 83.  et al. 2011. Phys. Rev. Lett. 107:176402 [Google Scholar]
  84. Ortenzi L, Cappelluti E, Benfatto L, Pietronero L. 84.  2009. Phys. Rev. Lett. 103:046404 [Google Scholar]
  85. Abdel-Hafiez M, Pu YJ, Brisbois J, Peng R, Feng DL. 85.  et al. 2016. Phys. Rev. B 93:224508 [Google Scholar]
  86. Kushnirenko Y, Kordyuk AA, Fedorov A, Haubold E, Wolf T. 86.  et al. 2017. Phys. Rev. B 96:100504 [Google Scholar]
  87. Brouet V, Lin PH, Texier Y, Bobroff J, Taleb-Ibrahimi A. 87.  et al. 2013. Phys. Rev. Lett. 110:167002 [Google Scholar]
  88. Dhaka RS, Hahn SE, Razzoli E, Jiang R, Shi M. 88.  et al. 2013. Phys. Rev. Lett. 110:067002 [Google Scholar]
  89. Watson MD, Kim TK, Haghighirad AA, Blake SF, Davies NR. 89.  et al. 2015. Phys. Rev. B 92:121108 [Google Scholar]
  90. Bendele M, Ichsanow A, Pashkevich Y, Keller L, Strässle T. 90.  et al. 2012. Phys. Rev. B 85:064517 [Google Scholar]
  91. Terashima T, Kikugawa N, Kasahara S, Watashige T, Shibauchi T. 91.  et al. 2015. J. Phys. Soc. Jpn. 84:063701 [Google Scholar]
  92. Sun Y, Pyon S, Tamegai T. 92.  2016. Phys. Rev. B 93:104502 [Google Scholar]
  93. Kothapalli K, Böhmer AE, Jayasekara WT, Ueland BG, Das P. 93.  et al. 2016. Nat. Commun. 7:12728 [Google Scholar]
  94. Mizuguchi Y, Tomioka F, Tsuda S, Yamaguchi T, Takano Y. 94.  2009. J. Phys. Soc. Jpn. 78:074712 [Google Scholar]
  95. Abdel-Hafiez M, Zhang YY, Cao ZY, Duan CG, Karapetrov G. 95.  et al. 2015. Phys. Rev. B 91:165109 [Google Scholar]
  96. Ovchenkov Y, Chareev D, Kulbachinskii VA, Kytin V, Presnov D. 96.  et al. 2017. Supercond. Sci. Technol. 30:035017 [Google Scholar]
  97. Song CL, Wang YL, Cheng P, Jiang YP, Li W. 97.  et al. 2011. Science 332:1410 [Google Scholar]
  98. Moore SA, Curtis JL, Di Giorgio C, Lechner E, Abdel-Hafiez M. 98.  et al. 2015. Phys. Rev. B 92:235113 [Google Scholar]
  99. Lin JY, Hsieh YS, Chareev DA, Vasiliev AN, Parsons Y, Yang HD. 99.  2011. Phys. Rev. B 84:220507 [Google Scholar]
  100. Bourgeois-Hope P, Chi S, Bonn DA, Liang R, Hardy WN. 100.  et al. 2016. Phys. Rev. Lett. 117:097003 [Google Scholar]
  101. Kreisel A, Andersen BM, Sprau PO, Kostin A, Séamus Davis JC, Hirschfeld PJ. 101.  2016. Phys. Rev. B 95:174504 [Google Scholar]
  102. Watashige T, Arsenijević S, Yamashita T, Terazawa D, Onishi T. 102.  et al. 2017. J. Phys. Soc. Jpn. 86:014707 [Google Scholar]
  103. Wang L, Hardy F, Wolf T, Adelmann P, Fromknecht R. 103.  et al. 2016. Phys. Status SolidiB 254:1 doi:10.1002/pssb.201600153 [Google Scholar]
  104. Xing RQ, Classen L, Khodas M, Chubukov AV. 104.  2017. Phys. Rev. B 95:085108 [Google Scholar]
  105. Yamakawa Y, Onari S, Kontani H. 105.  2016. Phys. Rev. X 6:021032 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-033117-054137
Loading
/content/journals/10.1146/annurev-conmatphys-033117-054137
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error