1932

Abstract

This is an idiosyncratic colloquium-style review of the idea that spacetime and gravity can emerge from entanglement. Drawing inspiration from the conjectured duality between quantum gravity in anti de Sitter space and certain conformal field theories, we argue that tensor networks can be used to define a discrete geometry that encodes entanglement geometrically. With the additional assumption that a continuum limit can be taken, the resulting geometry necessarily obeys Einstein's equations. The discussion takes the point of view that the emergence of spacetime and gravity is a mysterious phenomenon of quantum many-body physics that we would like to understand. We also briefly discuss possible experiments to detect emergent gravity in highly entangled quantum systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-033117-054219
2018-03-10
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/9/1/annurev-conmatphys-033117-054219.html?itemId=/content/journals/10.1146/annurev-conmatphys-033117-054219&mimeType=html&fmt=ahah

Literature Cited

  1. Misner C, Thorne K, Wheeler J. 1.  1973. Gravitation New York: W.H. Freeman [Google Scholar]
  2. Wheeler J, Ford K. 2.  2010. Geons, Black Holes, and Quantum Foam: A Life in Physics New York: W.W. Norton [Google Scholar]
  3. 3. LIGO Scientific Collaboration, Virgo Collaboration. Phys. Rev. Lett. 116:061102 [Google Scholar]
  4. Maldacena J. 4.  1999. Int. J. Theor. Phys. 38:1113–33 [Google Scholar]
  5. Aharony O, Gubser SS, Maldacena J, Ooguri H, Oz Y. 5.  2000. Phys. Rep. 323:183–386 [Google Scholar]
  6. Swingle B. 6.  2012. Phys. Rev. D 86:065007 [Google Scholar]
  7. van Raamsdonk M. 7.  2010. Gen. Relativ. Gravit. 42:2323–29 [Google Scholar]
  8. Riess AG, Filippenko AV, Challis P, Clocchiatti A, Diercks A. 8.  et al. 1998. Astron. J. 116:1009–38 [Google Scholar]
  9. Perlmutter S, Aldering G, Goldhaber G, Knop RA, Nugent P. 9.  et al. 1999. Astrophys. J. 517:565–86 [Google Scholar]
  10. Einstein A. 10.  1905. Ann. Phys. 322:891–921 [Google Scholar]
  11. Minkowski H. 11.  1908. Lecture to the Congress of Natural Philosophers, Cologne, Ger., Sept. 21
  12. 't Hooft G. 12.  1993. arXivgr–qc/9310026
  13. Susskind L. 13.  1995. J. Math. Phys. 36:6377–96 [Google Scholar]
  14. Tsui DC, Stormer HL, Gossard AC. 14.  1982. Phys. Rev. Lett. 48:1559–62 [Google Scholar]
  15. Laughlin RB. 15.  1983. Phys. Rev. Lett. 50:1395–98 [Google Scholar]
  16. Kitaev A, Preskill J. 16.  2006. Phys. Rev. Lett. 96:110404 [Google Scholar]
  17. Levin M, Wen XG. 17.  2006. Phys. Rev. Lett. 96:110405 [Google Scholar]
  18. Bekenstein JD. 18.  1973. Phys. Rev. D 7:2333–46 [Google Scholar]
  19. Bekenstein JD. 19.  1974. Phys. Rev. D 9:3292–300 [Google Scholar]
  20. Hawking SW. 20.  1974. Nature 248:30–31 [Google Scholar]
  21. Arnowitt R, Deser S, Misner CW. 21.  1959. Phys. Rev. 116:1322–30 [Google Scholar]
  22. Fannes M, Nachtergaele B, Werner RF. 22.  1992. Commun. Math. Phys. 144:443–90 [Google Scholar]
  23. Affleck I, Kennedy T, Lieb EH, Tasaki H. 23.  1987. Phys. Rev. Lett. 59:799–802 [Google Scholar]
  24. White SR. 24.  1992. Phys. Rev. Lett. 69:2863–66 [Google Scholar]
  25. Hastings MB. 25.  2007. J. Stat. Mech.: Theory Exp. 8:08024 [Google Scholar]
  26. Arad I, Landau Z, Vazirani U, Vidick T. 26.  2017. Commun. Math. Phys. 356:165–105 [Google Scholar]
  27. Callan C, Wilczek F. 27.  1994. Phys. Lett. B 333:55–61 [Google Scholar]
  28. Calabrese P, Cardy J. 28.  2004. J. Stat. Mech.: Theory Exp. 6:06002 [Google Scholar]
  29. Vidal G. 29.  2008. Phys. Rev. Lett. 101:110501 [Google Scholar]
  30. Swingle B, McGreevy J. 30.  2016. Phys. Rev. B 93:045127 [Google Scholar]
  31. Pfeifer RNC, Evenbly G, Vidal G. 31.  2009. Phys. Rev. A 79:040301 [Google Scholar]
  32. Evenbly G, White SR. 32.  2016. Phys. Rev. Lett. 116:140403 [Google Scholar]
  33. Swingle B, McGreevy J, Xu S. 33.  2016. Phys. Rev. B 93:205159 [Google Scholar]
  34. Ryu S, Takayanagi T. 34.  2006. Phys. Rev. Lett. 96:181602 [Google Scholar]
  35. Faulkner T, Lewkowycz A, Maldacena J. 35.  2013. J. High Energy Phys. 11:74 [Google Scholar]
  36. Casini H, Huerta M, Myers RC. 36.  2011. J. High Energy Phys. 5:36 [Google Scholar]
  37. Lashkari N, McDermott MB, Van Raamsdonk M. 37.  2014. J. High Energy Phys. 4:195 [Google Scholar]
  38. Faulkner T, Guica M, Hartman T, Myers RC, Van Raamsdonk M. 38.  2014. J. High Energy Phys. 3:51 [Google Scholar]
  39. Swingle B, Van Raamsdonk M. 39.  2014. arXiv1405.2933
  40. Swingle B. 40.  2012. arXiv1209.3304
  41. Hayden P, Nezami S, Qi XL, Thomas N, Walter M, Yang Z. 41.  2016. J. High Energy Phys. 11:9 [Google Scholar]
  42. Pastawski F, Yoshida B, Harlow D, Preskill J. 42.  2015. J. High Energy Phys. 6:149 [Google Scholar]
  43. Almheiri A, Dong X, Harlow D. 43.  2015. J. High Energy Phys. 4:163 [Google Scholar]
  44. Maldacena J, Simmons-Duffin D, Zhiboedov A. 44.  2015. arXiv1509.03612
  45. Bao N, Nezami S, Ooguri H, Stoica B, Sully J, Walter M. 45.  2015. J. High Energy Phys. 9:130 [Google Scholar]
  46. Shenker SH, Stanford D. 46.  2014. J. High Energy Phys. 3:67 [Google Scholar]
  47. Swingle B, Bentsen G, Schleier-Smith M, Hayden P. 47.  2016. Phys. Rev. A 94:040302 [Google Scholar]
  48. 48.  Deleted in proof
  49. Zhu G, Hafezi M, Grover T. 49.  2016. Phys. Rev. A. 94062329
  50. Maldacena J, Shenker SH, Stanford D. 50.  2016. J. High Energy Phys. 8:106 [Google Scholar]
  51. Sachdev S, Ye J. 51.  1993. Phys. Rev. Lett. 70:3339–42 [Google Scholar]
  52. Kitaev A. 52.  2015. Seminar presented at KITP strings seminar and Entanglement 2015 program, Santa Barbara, Calif., Apr. 7. http://online.kitp.ucsb.edu/online/entangled15/kitaev/
  53. Almheiri A, Polchinski J. 53.  2015. J. High Energy Phys. 11:14 [Google Scholar]
  54. Polchinski J, Rosenhaus V. 54.  2016. J. High Energy Phys. 4:1 [Google Scholar]
  55. Maldacena J, Stanford D. 55.  2016. Phys. Rev. D 94:106002 [Google Scholar]
  56. Danshita I, Hanada M, Tezuka M. 56.  2017. Prog. Theor. Exp. Phys. 2017:8083I01 [Google Scholar]
  57. Pikulin DI, Franz M. 57.  2017. Phys. Rev. X 7:031006 [Google Scholar]
  58. Czech B, Lamprou L, McCandlish S, Sully J. 58.  2015. J. High Energy Phys. 10:175 [Google Scholar]
  59. Czech B, Evenbly G, Lamprou L, McCandlish S, Xl Qi. 59.  et al. 2016. Phys. Rev. B 94:085101 [Google Scholar]
  60. Swingle B, McGreevy J. 60.  2016. Phys. Rev. B 94:155125 [Google Scholar]
  61. Hartman T, Maldacena J. 61.  2013. J. High Energy Phys. 5:14 [Google Scholar]
  62. Susskind L. 62.  2014. arXiv1402.5674
  63. Stanford D, Susskind L. 63.  2014. Phys. Rev. D 90:126007 [Google Scholar]
  64. Brown AR, Roberts DA, Susskind L, Swingle B, Zhao Y. 64.  2016. Phys. Rev. Lett. 116:191301 [Google Scholar]
  65. Susskind L. 65.  2014. arXiv1411.0690
/content/journals/10.1146/annurev-conmatphys-033117-054219
Loading
/content/journals/10.1146/annurev-conmatphys-033117-054219
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error