1932

Abstract

This is a review on the emergent field of topological mechanics, where concepts from electronic topological states of matter are applied to mechanics. We focus on the subcategory of topological mechanics of Maxwell lattices, which are mechanical frames having average coordination numbers equal to twice their spatial dimension, 〈〉=2, leaving them on the verge of mechanical instability. We start by introducing examples of Maxwell lattices, describing their elastic properties, and discussing their general classification. We then focus on topological phonon modes of these lattices by reviewing recent theoretical progress on one-dimensional chains and two-dimensional lattices that exhibit topologically protected zero-frequency phonon modes on edges and domain walls. We also propose metamaterials based on Maxwell lattices with unusual topologically protected mechanical properties.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-033117-054235
2018-03-10
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/9/1/annurev-conmatphys-033117-054235.html?itemId=/content/journals/10.1146/annurev-conmatphys-033117-054235&mimeType=html&fmt=ahah

Literature Cited

  1. Wen XG. 1.  1995. Adv. Phys. 44:405–73 [Google Scholar]
  2. Hasan MZ, Kane CL. 2.  2010. Rev. Mod. Phys. 82:3045–67 [Google Scholar]
  3. Qi XL, Zhang SC. 3.  2011. Rev. Mod. Phys. 83:1057–110 [Google Scholar]
  4. Su WP, Schrieffer JR, Heeger AJ. 4.  1979. Phys. Rev. Lett. 42:1698–701 [Google Scholar]
  5. Lu L, Joannopoulos JD, Soljačić M. 5.  2014. Nat. Photonics 8:821–29 [Google Scholar]
  6. Prodan E, Prodan C. 6.  2009. Phys. Rev. Lett. 103:248101 [Google Scholar]
  7. Kane CL, Lubensky TC. 7.  2014. Nat. Phys. 10:39–45 [Google Scholar]
  8. Lubensky TC, Kane C, Mao X, Souslov A, Sun K. 8.  2015. Rep. Prog. Phys. 78:073901 [Google Scholar]
  9. Wang P, Lu L, Bertoldi K. 9.  2015. Phys. Rev. Lett. 115:104302 [Google Scholar]
  10. Nash LM, Kleckner D, Read A, Vitelli V, Turner AM, Irvine WT. 10.  2015. PNAS 112:14495–500 [Google Scholar]
  11. Süsstrunk R, Huber SD. 11.  2015. Science 349:47–50 [Google Scholar]
  12. Mousavi SH, Khanikaev AB, Wang Z. 12.  2015. Nat. Commun. 6:8682 [Google Scholar]
  13. Yang Z, Gao F, Shi X, Lin X, Gao Z. 13.  et al. 2015. Phys. Rev. Lett. 114:114301 [Google Scholar]
  14. Peano V, Brendel C, Schmidt M, Marquardt F. 14.  2015. Phys. Rev. X 5:031011 [Google Scholar]
  15. Strohm C, Rikken G, Wyder P. 15.  2005. Phys. Rev. Lett. 95:155901 [Google Scholar]
  16. Sheng L, Sheng D, Ting C. 16.  2006. Phys. Rev. Lett. 96:155901 [Google Scholar]
  17. Pal RK, Schaeffer M, Ruzzene M. 17.  2016. J. Appl. Phys. 119:084305 [Google Scholar]
  18. He C, Ni X, Ge H, Sun XC, Chen YB. 18.  et al. 2016. Nat. Phys. 12:1124–29 [Google Scholar]
  19. Süsstrunk R, Huber SD. 19.  2016. PNAS 113:E4767–75 [Google Scholar]
  20. Xiao M, Chen WJ, He WY, Chan C. 20.  2015. Nat. Phys. 11:11920–24 [Google Scholar]
  21. Maxwell JC. 21.  1864. Philos. Mag. 27:294 [Google Scholar]
  22. Phillips JC. 22.  1979. J. Non-Cryst. Solids 34:153–81 [Google Scholar]
  23. Thorpe M. 23.  1983. J. Non-Cryst. Solids 57:355–70 [Google Scholar]
  24. Phillips JC, Thorpe MF. 24.  1985. Solid State Commun 53:699–702 [Google Scholar]
  25. He H, Thorpe MF. 25.  1985. Phys. Rev. Lett. 54:2107–10 [Google Scholar]
  26. Boolchand P, Lucovsky G, Phillips J, Thorpe M. 26.  2005. Philos. Mag. 85:3823–38 [Google Scholar]
  27. Feng S, Sen PN. 27.  1984. Phys. Rev. Lett. 52:216–19 [Google Scholar]
  28. Jacobs DJ, Thorpe MF. 28.  1995. Phys. Rev. Lett. 75:4051–54 [Google Scholar]
  29. Jacobs DJ, Thorpe MF. 29.  1996. Phys. Rev. E 53:3682–93 [Google Scholar]
  30. Ellenbroek WG, Mao X. 30.  2011. Europhys. Lett. 96:554002 [Google Scholar]
  31. Zhang L, Rocklin DZ, Chen BG, Mao X. 31.  2015. Phys. Rev. E 91:032124 [Google Scholar]
  32. Souslov A, Liu AJ, Lubensky TC. 32.  2009. Phys. Rev. Lett. 103:205503 [Google Scholar]
  33. Mao X, Xu N, Lubensky TC. 33.  2010. Phys. Rev. Lett. 104:085504 [Google Scholar]
  34. Mao X, Lubensky TC. 34.  2011. Phys. Rev. E 83:011111 [Google Scholar]
  35. Broedersz CP, Mao X, Lubensky TC, MacKintosh FC. 35.  2011. Nat. Phys. 7:983–88 [Google Scholar]
  36. Mao X, Stenull O, Lubensky TC. 36.  2013. Phys. Rev. E 87:042602 [Google Scholar]
  37. Mao X, Stenull O, Lubensky TC. 37.  2013. Phys. Rev. E 87:042601 [Google Scholar]
  38. Feng J, Levine H, Mao X, Sander LM. 38.  2015. Phys. Rev. E 91:042710 [Google Scholar]
  39. Feng J, Levine H, Mao X, Sander LM. 39.  2016. Soft Matter 12:1419–24 [Google Scholar]
  40. Mao X, Souslov A, Mendoza CI, Lubensky TC. 40.  2015. Nat. Commun. 6:5968 [Google Scholar]
  41. Zhang L, Mao X. 41.  2016. Phys. Rev. E 93:022110 [Google Scholar]
  42. Liarte DB, Stenull O, Mao X, Lubensky T. 42.  2016. J. Phys.: Condens. Matter 28:165402 [Google Scholar]
  43. Calladine C. 43.  1978. Int. J. Solids Struct. 14:161–72 [Google Scholar]
  44. Pellegrino S, Calladine CR. 44.  1986. Int. J. Solids Struct. 22:409–28 [Google Scholar]
  45. Guest SD, Hutchinson JW. 45.  2003. J. Mech. Phys. Solids 51:383–91 [Google Scholar]
  46. Rocklin DZ, Zhou S, Sun K, Mao X. 46.  2017. Nat. Commun. 8:14201 [Google Scholar]
  47. Stenull O, Lubensky TC. 47.  2014. Phys. Rev. Lett. 113:158301 [Google Scholar]
  48. Rocklin DZ, Chen BGG, Falk M, Vitelli V, Lubensky TC. 48.  2016. Phys. Rev. Lett. 116:135503 [Google Scholar]
  49. Landau LD, Lifshitz EM. 49.  1986. Theory of Elasticity New York: Pergamon [Google Scholar]
  50. Sun K, Souslov A, Mao X, Lubensky TC. 50.  2012. PNAS 109:12369–74 [Google Scholar]
  51. Berry M. 51.  1984. Proc. R. Soc. A. 44:45–57 [Google Scholar]
  52. Chen BG, Upadhyaya N, Vitelli V. 52.  2014. PNAS 111:13004–9 [Google Scholar]
  53. Wan XG, Turner AM, Vishwanath A, Savrasov SY. 53.  2011. Phys. Rev. B 83:205101 [Google Scholar]
  54. Burkov AA, Balents L. 54.  2011. Phys. Rev. Lett. 107:127205 [Google Scholar]
  55. Burkov AA, Hook MD, Balents L. 55.  2011. Phys. Rev. B 84:235126 [Google Scholar]
  56. Liu JP, Vanderbilt D. 56.  2014. Phys. Rev. B 90:155316 [Google Scholar]
  57. Xu SY, Belopolski I, Alidoust N, Neupane M, Bian G. 57.  et al. 2015. Science 349:6248613–17 [Google Scholar]
  58. Stenull O, Kane CL, Lubensky TC. 58.  2016. Phys. Rev. Lett. 117:068001 [Google Scholar]
  59. Volovik G. 59.  2007. Lect. Notes Phys. 718:31–73 [Google Scholar]
  60. Kim Y, Wieder BJ, Kane CL, Rappe AM. 60.  2015. Phys. Rev. Lett. 115:036806 [Google Scholar]
  61. Yu R, Weng HM, Fang Z, Dai X, Hu X. 61.  2015. Phys. Rev. Lett. 115:036807 [Google Scholar]
  62. Lu L, Fu L, Joannopoulos JD, Solja M. 62.  2013. Nat. Photonics 7:294–99 [Google Scholar]
  63. Sussman D, Stenull O, Lubensky T. 63.  2016. Soft Matter 12:6079–87 [Google Scholar]
  64. Paulose J, Meeussen AS, Vitelli V. 64.  2015. PNAS 112:7639–44 [Google Scholar]
  65. Paulose J, Chen BGG, Vitelli V. 65.  2015. Nat. Phys. 11:153–56 [Google Scholar]
  66. Rocklin DZ. 66.  2017. New J. Phys. 19:065004 [Google Scholar]
  67. Chen BG, Liu B, Evans AA, Paulose J, Cohen I. 67.  et al. 2016. Phys. Rev. Lett. 116:135501 [Google Scholar]
  68. Lawler MJ. 68.  2016. Phys. Rev. B 94:165101 [Google Scholar]
  69. Roychowdhury K, Rocklin DZ, Lawler MJ. 69.  2017. arXiv1705.00015
  70. Meeussen AS, Paulose J, Vitelli V. 70.  2016. Phys. Rev. X 6:041029 [Google Scholar]
  71. Socolar JES, Lubensky TC, Kane CL. 71.  2017. New J. Phys. 19:025003 [Google Scholar]
  72. Kitaev A. 72.  2006. Ann. Phys. 321:2–111 [Google Scholar]
  73. Wu GX, Cho Y, Choi IS, Ge DT, Li J. 73.  et al. 2015. Adv. Mater. 27:2747–52 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-033117-054235
Loading
/content/journals/10.1146/annurev-conmatphys-033117-054235
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error