1932

Abstract

When the complete understanding of a complex system is not available, as, e.g., for systems considered in the real world, we need a top-down approach to complexity. In this approach, one may desire to understand general multipoint statistics. Here, such a general approach is presented and discussed based on examples from turbulence and sea waves. Our main idea is based on the cascade picture of turbulence, entangling fluctuations from large to small scales. Inspired by this cascade picture, we express the general multipoint statistics by the statistics of scale-dependent fluctuations of variables and relate it to a scale-dependent process, which finally is a stochastic cascade process. We show how to extract from empirical data a Fokker–Planck equation for this cascade process, which allows the generation of surrogate data to forecast extreme events as well as to develop a nonequilibrium thermodynamics for the complex systems. For each cascade event, an entropy production can be determined. These entropies accurately fulfill a rigorous law, namely the integral fluctuations theorem.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-033117-054252
2019-03-10
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/10/1/annurev-conmatphys-033117-054252.html?itemId=/content/journals/10.1146/annurev-conmatphys-033117-054252&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Argyris J, Faust G, Haase M, Friedrich R 2015. An Exploration of Dynamical Systems and Chaos New York: Springer
    [Google Scholar]
  2. 2.  Heslot F, Castaing B, Libchaber A 1987. Phys. Rev. A 36:5870
    [Google Scholar]
  3. 3.  Haken H 2004. Synergetics, Introduction and Advanced Topics Heidelberg, New York: Springer
    [Google Scholar]
  4. 4.  Bar-Yam Y 1997. Dynamics of Complex Systems 213 Reading, MA: Addison-Wesley
    [Google Scholar]
  5. 5.  Friedrich R, Peinke J, Sahimi M, Tabar MRR 2011. Phys. Rep. 506:87–162
    [Google Scholar]
  6. 6.  Frisch U 2001. Turbulence: The Legacy of A. N. Kolmogorov Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  7. 7.  Davidson PA 2004. Turbulence: An Introduction for Scientists and Engineers Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  8. 8.  Pope SB 2000. Turbulent Flows Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  9. 9. Clay 2000. Millennium problems. Clay Mathematics Institute. http://www.claymath.org/millennium-problems
  10. 10.  Nazarenko S, Lukaschuk S 2016. Annu. Rev. Condens. Matter Phys. 7:61–88
    [Google Scholar]
  11. 11.  Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi T 2013. Phys. Rep. 528:47–89
    [Google Scholar]
  12. 12.  Akhmediev N, Ankiewicz A, Taki M 2009. Phys. Lett. A 373:675–78
    [Google Scholar]
  13. 13.  Hussain AF 1983. Phys. Fluids 26:2816–50
    [Google Scholar]
  14. 14.  Kantz H, Schreiber T 2004. Nonlinear Time Series Analysis. Cambridge Nonlinear Science Series Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  15. 15.  Friedrich R, Peinke J 1997. Phys. Rev. Lett. 78:863
    [Google Scholar]
  16. 16.  Peinke J, Friedrich R, Chillà F, Chabaud B, Naert A 1996. Z. Phys. B Condens. Matter 101:157–59
    [Google Scholar]
  17. 17.  Friedrich R, Peinke J 1997. Physica D 102:147
    [Google Scholar]
  18. 18.  Amblard PO, Brossier JM 1999. Eur. Phys. J. B-Condens. Matter Complex Syst. 12:579–82
    [Google Scholar]
  19. 19.  Castaing B, Gagne Y, Hopfinger E 1990. Phys. D: Nonlinear Phenom. 46:177–200
    [Google Scholar]
  20. 20.  Friedrich R, Peinke J, Reza Rahimi Tabar M 2012. Computational Complexity R Meyers113154 New York, NY: Springer
    [Google Scholar]
  21. 21.  Nawroth A, Peinke J 2006. Phys. Lett. A 360:234–37
    [Google Scholar]
  22. 22.  Nawroth AP, Friedrich R, Peinke J 2010. New J. Phys. 12:083021
    [Google Scholar]
  23. 23.  Stresing R, Peinke J 2010. New J. Phys. 12:103046
    [Google Scholar]
  24. 24.  Taylor GI 1938. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 164:476–90
    [Google Scholar]
  25. 25.  Waechter M, Kouzmitchev A, Peinke J 2004. Phys. Rev. E 70:055103(R)
    [Google Scholar]
  26. 26.  Waechter M, Riess F, Schimmel T, Wendt U, Peinke J 2004. Eur. Phys. J. B 41:259
    [Google Scholar]
  27. 27.  Muzy JF, Bacry E, Arneodo A 1993. Phys. Rev. E 47:875
    [Google Scholar]
  28. 28.  Farge M, Schneider K 2006. Encyclopedia of Mathematical Physics JP Françoise, G Naber, TS Tsun40820 Amsterdam: Elsevier
    [Google Scholar]
  29. 29.  Lovejoy S, Schertzer D 2013. The Weather and Climate: Emergent Laws and Multifractal Cascades Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  30. 30.  Friedrich J 2017. Closure of the Lundgren-Monin-Novikov hierarchy in turbulence via a Markov property of velocity increments in scale PhD Dissertation, Ruhr-Universität Bochum, Germany
    [Google Scholar]
  31. 31.  Renner C, Peinke J, Friedrich R 2001. J. Fluid Mech. 433:383–409
    [Google Scholar]
  32. 32.  Friedrich R, Zeller J, Peinke J 1998. Europhys. Lett. 41:153
    [Google Scholar]
  33. 33.  Tutkun M, Mydlarski L 2004. New J. Phys. 6:49
    [Google Scholar]
  34. 34.  Lück S, Renner C, Peinke J, Friedrich R 2006. Phys. Lett. A 359:335–38
    [Google Scholar]
  35. 35.  Marcq P, Naert A 2001. Phys. Fluids 13:2590–95
    [Google Scholar]
  36. 36.  Hadjihosseini A, Wächter M, Hoffmann NP, Peinke J 2016. New J. Phys. 18:013017
    [Google Scholar]
  37. 37.  Risken H 1984. The Fokker-Planck Equation Heidelberg: Springer
    [Google Scholar]
  38. 38.  Hänggi P, Thomas H 1982. Phys. Rep. 88:207–319
    [Google Scholar]
  39. 39.  Gardiner CW 1998. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences Berlin: Springer-Verlag
    [Google Scholar]
  40. 40.  Renner C 2002. Markowanalysen stochastisch fluktuierender Zeitserien PhD Dissertation, Universität Oldenburg, Germany
    [Google Scholar]
  41. 41.  Renner C, Peinke J, Friedrich R 2001. Phys. A: Stat. Mech. Appl. 298:499–520
    [Google Scholar]
  42. 42.  Einstein A 1905. Ann. Phys. 322:549–60
    [Google Scholar]
  43. 43.  Dubrulle B 2000. Eur. Phys. J. B 14:757–71
    [Google Scholar]
  44. 44.  Kolmogorov AN 1931. Math. Ann. 104:415–58
    [Google Scholar]
  45. 45.  Anvari M, Tabar MRR, Peinke J, Lehnertz K 2016. Sci. Rep. 6:35435
    [Google Scholar]
  46. 46.  Davoudi J, Tabar MRR 2000. Phys. Rev. E 61:6563
    [Google Scholar]
  47. 47.  Friedrich J, Margazoglou G, Biferale L, Grauer R 2018. Phys. Rev. E 98:023104
    [Google Scholar]
  48. 48.  Gottschall J, Peinke J 2008. New J. Phys. 10:083034
    [Google Scholar]
  49. 49.  Honisch C, Friedrich R 2011. Phys. Rev. E 83:066701
    [Google Scholar]
  50. 50.  Siefert M, Kittel A, Friedrich R, Peinke J 2003. Europhys. Lett. 61:466
    [Google Scholar]
  51. 51.  Böttcher F, Peinke J, Kleinhans D, Friedrich R, Lind PG, Haase M 2006. Phys. Rev. Lett. 97:090603
    [Google Scholar]
  52. 52.  Lehle B 2011. Phys. Rev. E 83:021113
    [Google Scholar]
  53. 53.  Lehle B, Peinke J 2018. Phys. Rev. E 97:012113
    [Google Scholar]
  54. 54.  Nawroth AP, Peinke J, Kleinhans D, Friedrich R 2007. Phys. Rev. E 76:056102
    [Google Scholar]
  55. 55.  Castaing B 1996. J. Phys. II France 6:105–14
    [Google Scholar]
  56. 56.  Friedrich R, Peinke J, Naert A 1997. Z. Naturforsch. 52a:588–92
    [Google Scholar]
  57. 57.  Kolmogorov AN 1962. J. Fluid Mech. 13:82–85
    [Google Scholar]
  58. 58.  Nickelsen D 2014. Markov processes in thermodynamics and turbulence PhD Dissertation, Universität Oldenburg, Germany
    [Google Scholar]
  59. 59.  Hallerberg S, Altmann EG, Holstein D, Kantz H 2007. Phys. Rev. E 75:016706
    [Google Scholar]
  60. 60.  Hadjihoseini A, Lind PG, Mori N, Hoffmann NP, Peinke J 2017. Europhys. Lett. 120:30008
    [Google Scholar]
  61. 61.  Laval JP, Dubrulle B, Nazarenko S 2001. Phys. Fluids 13:1995–2012
    [Google Scholar]
  62. 62.  Brown TM 1982. J. Phys. A: Math. Gen. 15:2285
    [Google Scholar]
  63. 63.  Seifert U 2012. Rep. Prog. Phys. 75:126001
    [Google Scholar]
  64. 64.  Nickelsen D, Engel A 2013. Phys. Rev. Lett. 110:214501
    [Google Scholar]
  65. 65.  Reinke N, Nickelsen D, Engel A, Peinke J 2016. Progress in Turbulence VI, Proceedings of the iTi Conference on Turbulence 2014, Springer Proceedings in Physics 165 J Peinke, G Kampers, M Oberlack, M Waclawcayk, A Talamelli1925 Heidelberg: Springer
    [Google Scholar]
  66. 66.  Reinke N, Fuchs A, Nickelsen D, Peinke J 2018. J. Fluid Mech. 848:117–53
    [Google Scholar]
  67. 67.  Sekimoto K 1998. Prog. Theor. Phys. Suppl. 130:17–27
    [Google Scholar]
  68. 68.  Renner C, Peinke J, Friedrich R 2002. arXiv:physics/0211121
  69. 69.  Gagne Y, Marchand M, Castaing B 1994. J. Phys. II 4:1–8
    [Google Scholar]
  70. 70.  Naert A, Friedrich R, Peinke J 1997. Phys. Rev. E 56:6719–22
    [Google Scholar]
  71. 71.  Fuchs A, Reinke N, Nickelsen D, Peinke J 2018. Proceedings of EUROMECH-ERCOFTAC Colloquium 589: Turbulent Cascades II M Gorokhovski Berlin New York: Springer In press
    [Google Scholar]
  72. 72.  Siefert M, Peinke J 2006. J. Turbul. 7:N50
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-033117-054252
Loading
/content/journals/10.1146/annurev-conmatphys-033117-054252
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error