1932

Abstract

Reliable simulations of correlated quantum systems, including high-temperature superconductors and frustrated magnets, are increasingly desired nowadays to further our understanding of essential features in such systems. Quantum Monte Carlo (QMC) is a unique numerically exact and intrinsically unbiased method to simulate interacting quantum many-body systems. More importantly, when QMC simulations are free from the notorious fermion sign problem, they can reliably simulate interacting quantum models with large system size and low temperature to reveal low-energy physics such as spontaneously broken symmetries and universal quantum critical behaviors. Here, we concisely review recent progress made in developing new sign-problem-free QMC algorithms, including those employing Majorana representation and those utilizing hot-spot physics. We also discuss applications of these novel sign-problem-free QMC algorithms in simulations of various interesting quantum many-body models. Finally, we discuss possible future directions of designing sign-problem-free QMC methods.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-033117-054307
2019-03-10
2025-02-17
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/10/1/annurev-conmatphys-033117-054307.html?itemId=/content/journals/10.1146/annurev-conmatphys-033117-054307&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Wen X-G 2004. Quantum Field Theory of Many-body Systems: From the Origin of Sound to an Origin of Light and Electron Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  2. 2.  Fradkin E 2013. Field Theories of Condensed Matter Physics Cambridge, UK: Cambridge Univ. Press. 2nd ed.
    [Google Scholar]
  3. 3.  Sachdev S 2011. Quantum Phase Transitions Cambridge, UK: Cambridge Univ. Press. 2nd ed.
    [Google Scholar]
  4. 4.  Carlson J, Gandolfi S, Pederiva F, Pieper SC, Schiavilla R et al. 2015. Rev. Mod. Phys. 87:1067–118
    [Google Scholar]
  5. 5.  Duane S, Kennedy AD, Pendleton BJ, Roweth D 1987. Phys. Lett. B 195:216
    [Google Scholar]
  6. 6.  Gupta R, Kilcup GW, Sharpe SR 1988. Phys. Rev. D 38:1278–87
    [Google Scholar]
  7. 7.  Suzuki M 1976. Prog. Theor. Phys. 56:1454
    [Google Scholar]
  8. 8.  Scalapino DJ, Sugar RL 1981. Phys. Rev. Lett. 46:59
    [Google Scholar]
  9. 9.  Blankenbecler R, Scalapino DJ, Sugar RL 1981. Phys. Rev. D 24:2278–86
    [Google Scholar]
  10. 10.  Fucito F, Marinari E, Parisi G, Rebbi C 1981. Nucl. Phys. B 180:369
    [Google Scholar]
  11. 11.  Hirsch JE, Scalapino DJ, Sugar RL, Blankenbecler R 1981. Phys. Rev. Lett. 47:1628
    [Google Scholar]
  12. 12.  Hirsch JE 1985. Phys. Rev. B 31:4403–19
    [Google Scholar]
  13. 13.  Hirsch JE, Lin HQ 1988. Phys. Rev. B 37:5070–74
    [Google Scholar]
  14. 14.  White SR, Scalapino DJ, Sugar RL, Loh EY, Gubernatis JE, Scalettar RT 1989. Phys. Rev. B. 40:506–16
    [Google Scholar]
  15. 15.  Hirsch JE, Fye RM 1986. Phys. Rev. Lett. 56:2521
    [Google Scholar]
  16. 16.  Assaad FF, Evertz HG 2008. Comput. Many Part. Phys. Lect. Notes Phys. 739:277
    [Google Scholar]
  17. 17.  Foulkes WMC, Mitas L, Needs RJ, Rajagopal G 2001. Rev. Mod. Phys. 73:33–83
    [Google Scholar]
  18. 18.  Metropolis N, Ulam SA 1949. J. Am. Stat. Assoc. 44:247
    [Google Scholar]
  19. 19.  Evertz HG, Lana G, Marcu M 1993. Phys. Rev. Lett. 70:875
    [Google Scholar]
  20. 20.  Evertz HG 2003. Adv. Phys. 52:1
    [Google Scholar]
  21. 21.  Loh EY, Gubernatis JE, Scalettar RT, White SR, Scalapino DJ, Sugar RL 1990. Phys. Rev. B 41:9301–7
    [Google Scholar]
  22. 22.  Troyer M, Wiese UJ 2005. Phys. Rev. Lett. 94:170201
    [Google Scholar]
  23. 23.  Anderson JB 1995. Int. Rev. Phys. Chem. 14:85
    [Google Scholar]
  24. 24.  van Bemme HJM, ten Haaf DFB, van Saarloos W, van Leeuwen JMJ, An G 1994. Phys. Rev. Lett. 72:2442
    [Google Scholar]
  25. 25.  Zhang S, Carlson J, Gubernatis JE 1995. Phys. Rev. Lett. 74:3652
    [Google Scholar]
  26. 26.  Zhang S, Carlson J, Gubernatis JE 1997. Phys. Rev. B 55:7464
    [Google Scholar]
  27. 27.  Fye R, Hirsch J 1989. Phys. Rev. B 40:4780
    [Google Scholar]
  28. 28.  Werner P, Comanac A, Medici L, Troyer M, Millis AJ 2006. Phys. Rev. Lett. 97:076405
    [Google Scholar]
  29. 29.  Gull E, Millis AJ, Lichtenstein AI, Rubtsov AN, Troyer M, Werner P 2011. Rev. Mod. Phys. 83:349–404
    [Google Scholar]
  30. 30.  Prokofev NV, Svistunov BV, Tupitsy IS 1996. J. Exp. Theoret. Phys. Lett. 64:911–16
    [Google Scholar]
  31. 31.  Beard BB, Wiese UJ 1996. Phys. Rev. Lett. 77:5130
    [Google Scholar]
  32. 32.  Prokofev NV, Svistunov BV, Tupitsyn IS 1998. J. Exp. Theoret. Phys. 87:310–21
    [Google Scholar]
  33. 33.  Rombouts SMA, Heyde K, Jachowicz N 1999. Phys. Rev. Lett. 82:4155
    [Google Scholar]
  34. 34.  Rubtsov A, Savkin V, Lichtenstein A 2005. Phys. Rev. B 72:035122
    [Google Scholar]
  35. 35.  Gull E, Werner P, Parcollet O, Troyer M 2008. Europhys. Lett. 82:57003
    [Google Scholar]
  36. 36.  Houckea KV, Kozika E, Prokofev N, Svistunova B 2010. Phys. Proc. 6:95
    [Google Scholar]
  37. 37.  Rossi R 2017. Phys. Rev. Lett. 119:045701
    [Google Scholar]
  38. 38.  Scalettar RT, Trivedi T, Huscroft C 1998. Phys. Rev. B. 59:4364
    [Google Scholar]
  39. 39.  Paiva T, Santos RR, Scalettar RT, Denteneer PJH 2004. Phys. Rev. B. 69:184501
    [Google Scholar]
  40. 40.  Bouadim K, Loh YL, Randeria M, Trivedi N 2011. Nat. Phys. 7:884–89
    [Google Scholar]
  41. 41.  Loh YL, Randeria M, Trivedi N, Chang CC, Scalettar R 2016. Phys. Rev. X 6:021029
    [Google Scholar]
  42. 42.  Assaad FF 2005. Phys. Rev. B 71:075103
    [Google Scholar]
  43. 43.  Otsuka Y, Seki K, Sorella S, Yunoki S 2018. Phys. Rev. B 98:035126
    [Google Scholar]
  44. 44.  Rosenberg P, Shi H, Zhang S 2017. Phys. Rev. Lett. 119:265301
    [Google Scholar]
  45. 45.  Meng ZY, Lang TC, Wessel S, Assaad FF, Muramatsu A 2010. Nature 464:847–51
    [Google Scholar]
  46. 46.  Lang TC, Meng ZY, Muramatsu A, Wessel S, Assaad FF 2013. Phys. Rev. Lett. 111:066401
    [Google Scholar]
  47. 47.  Assaad FF, Herbut IF 2013. Phys. Rev. X 3:031010
    [Google Scholar]
  48. 48.  Toldin FP, Hohenadler M, Assaad FF, Herbut IF 2015. Phys. Rev. B 91:165108
    [Google Scholar]
  49. 49.  Zheng D, Zhang GM, Wu C 2011. Phys. Rev. B 84:205121
    [Google Scholar]
  50. 50.  Hohenadler M, Meng ZY, Lang TC, Wessel S, Muramatsu A, Assaad FF 2012. Phys. Rev. B 85:115132
    [Google Scholar]
  51. 51.  Hung HH, Wang L, Gu ZC, Fiete GA 2013. Phys. Rev. B 87:121113(R)
    [Google Scholar]
  52. 52.  Hohenadler M, Lang TC, Assaad FF 2011. Phys. Rev. Lett. 106:100403
    [Google Scholar]
  53. 53.  Hohenadler M, Parisen Toldin F, Herbut IF, Assaad FF 2014. Phys. Rev. B 90:085146
    [Google Scholar]
  54. 54.  He YY, Wu HQ, You YZ, Xu C, Meng ZY, Lu ZY 2016. Phys. Rev. B 93:115150
    [Google Scholar]
  55. 55.  Lang TC, Essin AM, Gurarie V, Wessel S 2013. Phys. Rev. B 87:205101
    [Google Scholar]
  56. 56.  Hohenadler M, Assaad FF 2013. J. Phys.: Condens. Matter 25:14
    [Google Scholar]
  57. 57.  Wu HQ, He YY, You YZ, Xu C, Meng ZY, Lu ZY 2015. Phys. Rev. B 92:165123
    [Google Scholar]
  58. 58.  Slagle K, You YZ, Xu C 2015. Phys. Rev. B 91:115121
    [Google Scholar]
  59. 59.  Assaad FF 1999. Phys. Rev. Lett. 83:796
    [Google Scholar]
  60. 60.  Capponi S, Assaad FF 2001. Phys. Rev. B 63:155114
    [Google Scholar]
  61. 61.  Beach KSD, Lee PA, Monthoux P 2004. Phys. Rev. Lett. 92:026401
    [Google Scholar]
  62. 62.  Wu C, Zhang SC 2005. Phys. Rev. B 71:155115
    [Google Scholar]
  63. 63.  Wu C, Hu JP, Zhang SC 2003. Phys. Rev. Lett. 91:186402
    [Google Scholar]
  64. 64.  Berg E, Metlitski MA, Sachdev S 2012. Science 338:1606–9
    [Google Scholar]
  65. 65.  Kivelson SA, Bindloss IP, Fradkin E, Oganesyan V, Tranquada JM et al. 2003. Rev. Mod. Phys. 75:1201
    [Google Scholar]
  66. 66.  Lee PA, Nagaosa N, Wen XG 2006. Rev. Mod. Phys. 78:17
    [Google Scholar]
  67. 67.  Wang F, Lee DH 2011. Science 332:200–4
    [Google Scholar]
  68. 68.  Hirschfeld PJ, Korshunov MM, Mazin II 2011. Rep. Prog. Phys. 74:124508
    [Google Scholar]
  69. 69.  Hertz JA 1976. Phys. Rev. B 14:1165–84
    [Google Scholar]
  70. 70.  Millis AJ 1993. Phys. Rev. B 48:7183–96
    [Google Scholar]
  71. 71.  Abanov A, Chubukov AV 2000. Phys. Rev. Lett. 84:5608
    [Google Scholar]
  72. 72.  Paul I, Kotliar G 2001. Phys. Rev. B 64:184414
    [Google Scholar]
  73. 73.  Pankov S, Florens S, Georges A, Kotliar G, Sachdev S 2004. Phys. Rev. B 69:054426
    [Google Scholar]
  74. 74.  Metlitski MA, Sachdev S 2010. Phys. Rev. B 82:075128
    [Google Scholar]
  75. 75.  Lee SS 2009. Phys. Rev. B 80:165102
    [Google Scholar]
  76. 76.  Schattner Y, Lederer S, Kivelson SA, Berg E 2016. Phys. Rev. X 6:031028
    [Google Scholar]
  77. 77.  Li ZX, Wang F, Yao H, Lee DH 2017. Phys. Rev. B 95:214505
    [Google Scholar]
  78. 78.  Schattner Y, Gerlach MH, Trebst S, Berg E 2016. Phys. Rev. Lett. 117:097002
    [Google Scholar]
  79. 79.  Gerlach MH, Schattner Y, Berg E, Trebst S 2017. Phys. Rev. B 95:035124
    [Google Scholar]
  80. 80.  Xu XY, Beach KSD, Sun K, Assaad FF, Meng ZY 2017. Phys. Rev. B 95:085110
    [Google Scholar]
  81. 81.  Xu XY, Sun K, Schattner Y, Berg E, Meng ZY 2017. Phys. Rev. X 7:031058
    [Google Scholar]
  82. 82.  Wang X, Schattner Y, Berg E, Fernandes RM 2017. Phys. Rev. B 95:174520
    [Google Scholar]
  83. 83.  Lederer S, Schattner Y, Berg E, Kivelson SA 2017. PNAS 114:4905–10
    [Google Scholar]
  84. 84.  Li ZX, Wang F, Yao H, Lee DH 2016. Sci. Bull. 61:925
    [Google Scholar]
  85. 85.  Dumitrescu PT, Serbyn M, Scalettar RT, Vishwanath A 2016. Phys. Rev. B 94:155127
    [Google Scholar]
  86. 86.  Liu ZH, Xu XY, Qi Y, Sun K, Meng ZY 2018. Phys. Rev. B 98:045116
    [Google Scholar]
  87. 87.  Wang X, Wang Y, Schattner Y, Berg E, Fernandes RM 2018. Phys. Rev. Lett. 120:247002
    [Google Scholar]
  88. 88.  Sugiyama G, Koogin S 1986. Ann. Phys. 168:1
    [Google Scholar]
  89. 89.  Sorella S, Baroni S, Car R, Parrinello M 1989. Europhys. Lett. 8:663
    [Google Scholar]
  90. 90.  Sorella S, Tosatti E, Baroni S, Car SR, Parrinello M 1989. Int. J. Mod. Phys. B 1:993
    [Google Scholar]
  91. 91.  da Silva Neto EH, Comin R, He F, Sutarto R, Jiang Y et al. 2015. Science 347:282–85
    [Google Scholar]
  92. 92.  da Silva Neto EH, Yu B, Minola M, Sutarto R, Schierle E et al. 2016. Sci. Adv. 2:e1600782
    [Google Scholar]
  93. 93.  Comin R, Damascelli A 2016. Annu. Rev. Condens. Matter Phys. 7:369–405
    [Google Scholar]
  94. 94.  Schlief A, Lunts P, Lee SS 2017. Phys. Rev. X 7:021010
    [Google Scholar]
  95. 95.  Lee SS 2018. Annu. Rev. Condens. Matter Phys. 9:227–44
    [Google Scholar]
  96. 96.  Li ZX, Jiang YF, Yao H 2015. Phys. Rev. B 91:241117
    [Google Scholar]
  97. 97.  Jiang YF, Li ZX, Kivelson SA, Yao H 2017. Phys. Rev. B 95:241103
    [Google Scholar]
  98. 98.  Li ZX, Jiang YF, Jian SK, Yao H 2017. Nat. Commun. 8:314
    [Google Scholar]
  99. 99.  Wang L, Corboz P, Troyer M 2014. New J. Phys. 16:103008
    [Google Scholar]
  100. 100.  Li ZX, Jiang YF, Yao H 2015. New J. Phys. 17:085003
    [Google Scholar]
  101. 101.  Hesselmann S, Wessel S 2016. Phys. Rev. B 93:155157
    [Google Scholar]
  102. 102.  Huffman EF, Chandrasekharan S 2017. Phys. Rev. D 96:114502
    [Google Scholar]
  103. 103.  Wang L, Liu YH, Troyer M 2016. Phys. Rev. B 93:155117
    [Google Scholar]
  104. 104.  Liu YH, Wang L 2015. Phys. Rev. B 92:235129
    [Google Scholar]
  105. 105.  Gross DJ, Neveu A 1974. Phys. Rev. D 10:3235
    [Google Scholar]
  106. 106.  Rosenstein B, Yu HL, Kovner A 1993. Phys. Lett. B 314:381
    [Google Scholar]
  107. 107.  Karkkainenf L, Lacaze R, Lacock P, Petersson B 1994. Nucl. Phys. B 415:781
    [Google Scholar]
  108. 108.  Bercx M, Hofmann JS, Assaad FF, Lang TC 2017. Phys. Rev. B 95:035108
    [Google Scholar]
  109. 109.  Jian SK, Yao H 2017. Phys. Rev. B 96:195162
    [Google Scholar]
  110. 110.  Jian SK, Yao H 2017. Phys. Rev. B 96:155112
    [Google Scholar]
  111. 111.  Scherer MM, Herbut IF 2016. Phys. Rev. B 94:205136
    [Google Scholar]
  112. 112.  Zhou Z, Wang D, Meng ZY, Wang Y, Wu C 2016. Phys. Rev. B 93:245157
    [Google Scholar]
  113. 113.  Li ZX, Jiang YF, Yao H 2017. Phys. Rev. Lett. 119:107202
    [Google Scholar]
  114. 114.  Grover T, Sheng DN, Vishwanath A 2014. Science 344:280
    [Google Scholar]
  115. 115.  Li Z-X, Vaezi A, Mendl CB, Yao H 2018. Sci. Adv. 4:eaau1463
    [Google Scholar]
  116. 116.  Balents L, Fisher MPA, Nayak C 1998. Int. J. Mod. Phys. B 12:1033
    [Google Scholar]
  117. 117.  Ponte P, Lee SS 2014. New J. Phys. 16:013044
    [Google Scholar]
  118. 118.  Jian SK, Jiang YF, Yao H 2015. Phys. Rev. Lett. 114:237001
    [Google Scholar]
  119. 119.  Berg E, Fradkin E, Kivelson SA 2009. Nat. Phys. 5:830
    [Google Scholar]
  120. 120.  Berg E, Fradkin E, Kivelson SA 2009. Phys. Rev. B 79:064515
    [Google Scholar]
  121. 121.  Li ZX, Yao H 2017. Phys. Rev. B 96:241101
    [Google Scholar]
  122. 122.  Gazit S, Randeria M, Vishwanath A 2017. Nat. Phys. 13:484–90
    [Google Scholar]
  123. 123.  Assaad FF, Grover T 2016. Phys. Rev. X 6:041049
    [Google Scholar]
  124. 124.  Broecker P, Trebst S 2016. Phys. Rev. B 94:075144
    [Google Scholar]
  125. 125.  Broecker P, Carrasquilla J, Melko RG, Trebst S 2017. Sci. Rep. 7:8823
    [Google Scholar]
  126. 126.  Li ZX, Jiang YF, Yao H 2016. Phys. Rev. Lett. 117:267002
    [Google Scholar]
  127. 127.  Kitaev A 2009. Advances in Theoretical Physics: Landau Memorial Conference V Lebedev, M Feigel'man AIP Conf. Proc. 113422 Melville, NY: AIP
    [Google Scholar]
  128. 128.  Wei ZC, Wu C, Li Y, Zhang S, Xiang T 2016. Phys. Rev. Lett. 116:250601
    [Google Scholar]
  129. 129.  Jaffe A, Pedrocchi FL 2015. Ann. Henri Poincare 16:189–203
    [Google Scholar]
  130. 130.  Jaffe A, Janssens B 2016. Commun. Math. Phys. 346:31021–50
    [Google Scholar]
  131. 131.  Lieb EH 1989. Phys. Rev. Lett. 62:1201
    [Google Scholar]
  132. 132.  Wei ZC, Han XJ, Xie ZY, Xiang T 2015. Phys. Rev. B 92:161105
    [Google Scholar]
  133. 133.  Wei ZC 2017. arXiv:1712.09412
  134. 134.  Sandvik AW 2003. Phys. Rev. E 68:056701
    [Google Scholar]
  135. 135.  Chandrasekharan S 2010. Phys. Rev. D 82:025007
    [Google Scholar]
  136. 136.  Chandrasekharan S, Li A 2012. Phys. Rev. Lett. 108:140404
    [Google Scholar]
  137. 137.  Huffman EF, Chandrasekharan S 2014. Phys. Rev. B 89:111101
    [Google Scholar]
  138. 138.  Wang L, Liu YH, Iazzi M, Troyer M, Harcos G 2015. Phys. Rev. Lett. 115:250601
    [Google Scholar]
  139. 139.  Iazzi M, Troyer M 2015. Phys. Rev. B 91:241118
    [Google Scholar]
  140. 140.  Wang L, Iazzi M, Corboz P, Troyer M 2015. Phys. Rev. B 91:235151
    [Google Scholar]
  141. 141.  Wang L, Liu YH, Imriska J, Ma PN, Troyer M 2015. Phys. Rev. X 5:031007
    [Google Scholar]
  142. 142.  Wang L, Troyer M 2014. Phys. Rev. Lett. 113:110401
    [Google Scholar]
  143. 143.  Ringle Z, Kovrizhin DL 2017. Sci. Adv. 3:e1701758
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-033117-054307
Loading
/content/journals/10.1146/annurev-conmatphys-033117-054307
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error