1932

Abstract

The aversion of hydrophobic solutes for water drives diverse interactions and assemblies across materials science, biology, and beyond. Here, we review the theoretical, computational, and experimental developments that underpin a contemporary understanding of hydrophobic effects. We discuss how an understanding of density fluctuations in bulk water can shed light on the fundamental differences in the hydration of molecular and macroscopic solutes; these differences, in turn, explain why hydrophobic interactions become stronger upon increasing temperature. We also illustrate the sensitive dependence of surface hydrophobicity on the chemical and topographical patterns the surface displays, which makes the use of approximate approaches for estimating hydrophobicity particularly challenging. Importantly, the hydrophobicity of complex surfaces, such as those of proteins, which display nanoscale heterogeneity, can nevertheless be characterized using interfacial water density fluctuations; such a characterization also informs protein regions that mediate their interactions. Finally, we build upon an understanding of hydrophobic hydration and the ability to characterize hydrophobicity to inform the context-dependent thermodynamic forces that drive hydrophobic interactions and the desolvation barriers that impede them.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-040220-045516
2022-03-10
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/13/1/annurev-conmatphys-040220-045516.html?itemId=/content/journals/10.1146/annurev-conmatphys-040220-045516&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ball P. 2008. Chem. Rev. 108:174–108
  2. 2. 
    Jamadagni SN, Godawat R, Garde S. 2011. Annu. Rev. Chem. Biomol. Eng. 2:147–71
  3. 3. 
    Hillyer MB, Gibb BC. 2016. Annu. Rev. Phys. Chem. 67:307–29
  4. 4. 
    Ben-Amotz D. 2016. Annu. Rev. Phys. Chem. 67:617–38
  5. 5. 
    Berne BJ, Weeks JD, Zhou R. 2009. Annu. Rev. Phys. Chem. 60:85–103
  6. 6. 
    Dill KA, Truskett TM, Vlachy V, Hribar-Lee B. 2005. Annu. Rev. Biophys. Biomol. Struct. 34:173–99
  7. 7. 
    Tanford C. 1973. Hydrophobic Effect: Formation of Micelles and Biological Membranes New York: Wiley
  8. 8. 
    Haase MF, Sharifi-Mood N, Lee D, Stebe KJ 2016. ACS Nano 10:66338–44
  9. 9. 
    Dobson CM. 2003. Nature 426:6968884–90
  10. 10. 
    Levy Y, Onuchic JN. 2006. Annu. Rev. Biophys. Biomol. Struct. 35:389–415
  11. 11. 
    Krone MG, Hua L, Soto P, Zhou R, Berne BJ, Shea JE. 2008. J. Am. Chem. Soc. 130:3311066–72
  12. 12. 
    Thirumalai D, O'Brien EP, Morrison G, Hyeon C. 2010. Annu. Rev. Biophys. 39:159–83
  13. 13. 
    Chandler D, Varilly P. 2012. Proc. Int. School Phys. “Enrico Fermi” 176 Complex Materials in Physics and Biology, Varenna, Italy, July 2010, ed. F Mallamace, HE Stanley, pp 75–111 Amsterdam: IOS Press
  14. 14. 
    Chandler D. 2005. Nature 437:7059640–47
  15. 15. 
    Godawat R, Jamadagni SN, Garde S. 2009. PNAS 106:3615119–24
  16. 16. 
    Patel AJ, Varilly P, Chandler D 2010. J. Phys. Chem. B 114:41632–37
  17. 17. 
    Patel AJ, Varilly P, Jamadagni SN, Acharya H, Garde S, Chandler D. 2011. PNAS 108:4317678–83
  18. 18. 
    Patel AJ, Varilly P, Jamadagni SN, Hagan MF, Chandler D, Garde S 2012. J. Phys. Chem. B 116:82498–503
  19. 19. 
    Patel AJ, Garde S. 2014. J. Phys. Chem. B 118:61564–73
  20. 20. 
    Giovambattista N, Lopez CF, Rossky PJ, Debenedetti PG. 2008. PNAS 105:72274–79
  21. 21. 
    Giovambattista N, Debenedetti PG, Rossky PJ. 2009. PNAS 106:3615181–85
  22. 22. 
    Acharya H, Vembanur S, Jamadagni SN, Garde S. 2010. Faraday Discuss 146:353–65
  23. 23. 
    Mittal J, Hummer G. 2010. Faraday Discuss 146:341–52
  24. 24. 
    Xi E, Venkateshwaran V, Li L, Rego N, Patel AJ, Garde S. 2017. PNAS 114:5113345–50
  25. 25. 
    Fennell CJ, Dill KA. 2011. J. Stat. Phys. 145:2209–26
  26. 26. 
    Harris RC, Pettitt BM. 2014. PNAS 111:4114681–86
  27. 27. 
    Wang J, Bratko D, Luzar A. 2011. PNAS 108:166374–79
  28. 28. 
    Factorovich MH, Molinero V, Scherlis DA. 2015. J. Am. Chem. Soc. 137:3310618–23
  29. 29. 
    Kanduč M, Netz RR. 2015. PNAS 112:4012338–43
  30. 30. 
    Rego NB, Xi E, Patel AJ. 2021. PNAS 118:6e2018234118
  31. 31. 
    Miller TF, Vanden-Eijnden E, Chandler D 2007. PNAS 104:3714559–64
  32. 32. 
    Setny P, Baron R, Kekenes-Huskey PM, McCammon JA, Dzubiella J. 2013. PNAS 110:41197–202
  33. 33. 
    Mondal J, Morrone JA, Berne BJ. 2013. PNAS 110:3313277–82
  34. 34. 
    Tiwary P, Mondal J, Morrone JA, Berne BJ. 2015. PNAS 112:3912015–19
  35. 35. 
    Jiang Z, Remsing RC, Rego NB, Patel AJ. 2019. J. Phys. Chem. B 123:71650–61
  36. 36. 
    Dhabal D, Jiang Z, Pallath A, Patel AJ. 2021. J. Phys. Chem. B 125:205434–42
  37. 37. 
    Giovambattista N, Rossky P, Debenedetti P. 2012. Annu. Rev. Phys. Chem. 63:179–200
  38. 38. 
    Baron R, McCammon JA. 2013. Annu. Rev. Phys. Chem. 64:151–75
  39. 39. 
    Bellissent-Funel MC, Hassanali A, Havenith M, Henchman R, Pohl P et al. 2016. Chem. Rev. 116:137673–97
  40. 40. 
    Monroe J, Barry M, DeStefano A, Aydogan Gokturk P, Jiao S et al. 2020. Annu. Rev. Chem. Biomol. Eng. 11:523–57
  41. 41. 
    Hummer G, Garde S, García AE, Paulaitis ME, Pratt LR. 1998. J. Phys. Chem. B 102:5110469–82
  42. 42. 
    Southall NT, Dill KA, Haymet ADJ. 2002. J. Phys. Chem. B 106:3521–33
  43. 43. 
    Lee CY, McCammon JA, Rossky PJ. 1984. J. Chem. Phys. 80:94448–55
  44. 44. 
    Willard AP, Chandler D 2010. J. Phys. Chem. B 114:51954–58
  45. 45. 
    Hummer G, Garde S, García AE, Pohorille A, Pratt LR. 1996. PNAS 93:178951–55
  46. 46. 
    Garde S, Hummer G, García AE, Paulaitis ME, Pratt LR. 1996. Phys. Rev. Lett. 77:244966–68
  47. 47. 
    Patel AJ, Varilly P, Chandler D, Garde S 2011. J. Stat. Phys. 145:2265–75
  48. 48. 
    Li ITS, Walker GC. 2011. PNAS 108:4016527–32
  49. 49. 
    Remsing RC, Patel AJ. 2015. J. Chem. Phys. 142:2024502
  50. 50. 
    Weeks JD. 2002. Annu. Rev. Phys. Chem. 53:533–62
  51. 51. 
    Ashbaugh HS, Pratt LR. 2006. Rev. Mod. Phys. 78:1159–78
  52. 52. 
    Remsing RC, Weeks JD. 2013. J. Phys. Chem. B 117:4915479–91
  53. 53. 
    Widom B. 1963. J. Chem. Phys. 39:112808–12
  54. 54. 
    Beck TL, Paulaitis ME, Pratt LR. 2006. The Potential Distribution Theorem and Models of Molecular Solutions Cambridge, UK: Cambridge Univ. Press
  55. 55. 
    Chandler D. 1993. Phys. Rev. E 48:42898–905
  56. 56. 
    Pratt LR, Chandler D. 1977. J. Chem. Phys. 67:83683–704
  57. 57. 
    Pratt LR. 2002. Annu. Rev. Phys. Chem. 53:409–36
  58. 58. 
    Stillinger FH. 1973. J. Solut. Chem. 2:2141–58
  59. 59. 
    Lum K, Chandler D, Weeks JD. 1999. J. Phys. Chem. B 103:224570–77
  60. 60. 
    Huang DM, Chandler D. 2000. PNAS 97:158324–27
  61. 61. 
    Huang DM, Geissler PL, Chandler D. 2001. J. Phys. Chem. B 105:286704–9
  62. 62. 
    Rajamani S, Truskett TM, Garde S. 2005. PNAS 102:279475–80
  63. 63. 
    ten Wolde PR, Sun SX, Chandler D. 2002. Phys. Rev. E 65:1 Pt. 1011201
  64. 64. 
    Varilly P, Patel AJ, Chandler D. 2011. J. Chem. Phys. 134:7074109
  65. 65. 
    Vaikuntanathan S, Rotskoff G, Hudson A, Geissler PL 2016. PNAS 113:16E2224–30
  66. 66. 
    Xi E, Patel AJ. 2016. PNAS 113:174549–51
  67. 67. 
    Davis JG, Gierszal KP, Wang P, Ben-Amotz D. 2012. Nature 491:7425582–85
  68. 68. 
    Garde S, Patel AJ. 2011. PNAS 108:4016491–92
  69. 69. 
    Israelachvili J, Wennerström H. 1996. Nature 379:6562219–25
  70. 70. 
    Ben-Naim A. 1978. J. Phys. Chem. 82:7792–803
  71. 71. 
    Ben-Naim A. 1987. Solvation Thermodynamics New York: Springer
  72. 72. 
    Beglov D, Roux B. 1994. J. Chem. Phys. 100:129050–63
  73. 73. 
    Jiang H, Patel AJ. 2019. Curr. Opin. Chem. Eng. 23:130–37
  74. 74. 
    Jiang H, Fialoke S, Vicars Z, Patel AJ. 2019. Soft Matter 15:5860–69
  75. 75. 
    Granick S, Bae SC. 2008. Science 322:59071477–78
  76. 76. 
    Mittal J, Hummer G. 2008. PNAS 105:5120130–35
  77. 77. 
    Sarupria S, Garde S. 2009. Phys. Rev. Lett. 103:3037803
  78. 78. 
    Laage D, Stirnemann G, Sterpone F, Hynes JT. 2012. Acc. Chem. Res. 45:153–62
  79. 79. 
    Shenogina N, Godawat R, Keblinski P, Garde S. 2009. Phys. Rev. Lett. 102:15156101
  80. 80. 
    Ajdari A, Bocquet L. 2006. Phys. Rev. Lett. 96:18186102
  81. 81. 
    Giovambattista N, Debenedetti PG, Rossky PJ. 2007. J. Phys. Chem. C 111:31323–32
  82. 82. 
    Heyden M, Tobias DJ. 2013. Phys. Rev. Lett. 111:21218101
  83. 83. 
    Fogarty AC, Laage D. 2014. J. Phys. Chem. B 118:287715–29
  84. 84. 
    Shin S, Willard AP. 2018. J. Phys. Chem. B 122:266781–89
  85. 85. 
    Monroe JI, Shell MS. 2018. PNAS 115:328093–98
  86. 86. 
    Heyden M. 2019. WIREs Comput. Mol. Sci. 9:2e1390
  87. 87. 
    Xiao Q, Liu Y, Guo Z, Liu Z, Lohse D, Zhang X. 2017. Langmuir 33:328090–96
  88. 88. 
    Xi E, Remsing RC, Patel AJ. 2016. J. Chem. Theory Comput. 12:2706–13
  89. 89. 
    Young T, Abel R, Kim B, Berne BJ, Friesner RA. 2007. PNAS 104:3808–13
  90. 90. 
    Nguyen CN, Kurtzman Young T, Gilson MK 2012. J. Chem. Phys. 137:4044101
  91. 91. 
    Huggins DJ, Payne MC. 2013. J. Phys. Chem. B 117:278232–44
  92. 92. 
    Levy RM, Cui D, Zhang BW, Matubayasi N. 2017. J. Phys. Chem. B 121:153825–41
  93. 93. 
    Ma CD, Wang C, Acevedo-Vélez C, Gellman SH, Abbott NL. 2015. Nature 517:7534347–50
  94. 94. 
    Barnett JW, Sullivan MR, Long JA, Tang D, Nguyen T et al. 2020. Nat. Chem. 12:7589–94
  95. 95. 
    Garde S. 2015. Nature 517:7534277–79
  96. 96. 
    Garde S. 2020. Nat. Chem. 12:7587–88
  97. 97. 
    Zhou R, Huang X, Margulis CJ, Berne BJ. 2004. Science 305:56901605–9
  98. 98. 
    Liu P, Huang X, Zhou R, Berne BJ. 2005. Nature 437:7055159–62
  99. 99. 
    Rego NB, Xi E, Patel AJ. 2019. J. Am. Chem. Soc. 141:52080–86
  100. 100. 
    Eisenberg D, McLachlan AD. 1986. Nature 319:6050199–203
  101. 101. 
    Roux B, Simonson T. 1999. Biophys. Chem. 78:1-21–20
  102. 102. 
    Kang YK, Nemethy G, Scheraga HA. 1987. J. Phys. Chem. 91:154105–9
  103. 103. 
    Mobley DL, Bayly CI, Cooper MD, Shirts MR, Dill KA. 2009. J. Chem. Theory Comput. 5:2350–58
  104. 104. 
    Kyte J, Doolittle RF. 1982. J. Mol. Biol. 157:1105–32
  105. 105. 
    Ferrara P, Gohlke H, Price DJ, Klebe G, Brooks CL. 2004. J. Med. Chem. 47:123032–47
  106. 106. 
    Bonella S, Raimondo D, Milanetti E, Tramontano A, Ciccotti G. 2014. J. Phys. Chem. B 118:246604–13
  107. 107. 
    Eisenberg D. 1984. Annu. Rev. Biochem. 53:595–623
  108. 108. 
    Rose GD, Wolfenden R. 1993. Annu. Rev. Biophys. Biomol. Struct. 22:381–415
  109. 109. 
    Cornette JL, Cease KB, Margalit H, Spouge JL, Berzofsky JA, DeLisi C. 1987. J. Mol. Biol. 195:3659–85
  110. 110. 
    Kortemme T, Baker D. 2002. PNAS 99:2214116–21
  111. 111. 
    Kollman PA, Massova I, Reyes C, Kuhn B, Huo S et al. 2000. Acc. Chem. Res. 33:12889–97
  112. 112. 
    Kister AE, Phillips JC. 2008. PNAS 105:279233–37
  113. 113. 
    Shen VK, Cheung JK, Errington JR, Truskett TM. 2006. Biophys. J. 90:61949–60
  114. 114. 
    Palmer JC, Debenedetti PG. 2012. J. Phys. Chem. Lett. 3:182713–18
  115. 115. 
    Thirumalai D, Reddy G, Straub JE. 2012. Acc. Chem. Res. 45:183–92
  116. 116. 
    Vashisth H, Abrams CF. 2013. Proteins: Struct., Funct., Bioinf 81:61017–30
  117. 117. 
    Remsing RC, Xi E, Patel AJ. 2018. J. Phys. Chem. B 122:133635–46
  118. 118. 
    Whitesides GM, Grzybowski B. 2002. Science 295:55642418–21
  119. 119. 
    Mehta SK, Bhasin KK, Chauhan R, Dham S. 2005. Colloids Surf. A 255:1153–57 https://www.sciencedirect.com/journal/colloids-and-surfaces-a-physicochemical-and-engineering-aspects
  120. 120. 
    Kim SB, Palmer JC, Debenedetti PG. 2016. PNAS 113:328991–96
  121. 121. 
    Tang D, Barnett JW, Gibb BC, Ashbaugh HS. 2017. J. Phys. Chem. B 121:4710717–25
  122. 122. 
    Setny P, Baron R, McCammon JA. 2010. J. Chem. Theory Comput. 6:92866–71
  123. 123. 
    Avvisati G, Vissers T, Dijkstra M. 2015. J. Chem. Phys. 142:8084905
  124. 124. 
    Tanford C. 1968. Adv. Protein Chem. 23:121–282
  125. 125. 
    Privalov PL. 1990. Crit. Rev. Biochem. Mol. Biol. 25:4281–306
  126. 126. 
    Matysiak S, Debenedetti PG, Rossky PJ. 2012. J. Phys. Chem. B 116:288095–104
  127. 127. 
    Monroe JI, Jiao S, Davis RJ, Brown DR, Katz LE, Shell MS. 2021. PNAS 118:1e2020205118
  128. 128. 
    Suating P, Nguyen TT, Ernst NE, Wang Y, Jordan JH et al. 2020. Chem. Sci. 11:143656–63
  129. 129. 
    Snyder PW, Mecinović J, Moustakas DT, Thomas SW, Harder M et al. 2011. PNAS 108:4417889–94
  130. 130. 
    Young L, Jernigan RL, Covell DG. 1994. Prot. Sci. 3:5717–29
  131. 131. 
    Keskin O, Gursoy A, Ma B, Nussinov R. 2008. Chem. Rev. 108:41225–44
  132. 132. 
    Rossky PJ. 2010. Faraday Discuss 146:13–18
  133. 133. 
    Cui D, Ou S, Patel S 2014. Proteins: Struct., Funct., Bioinf 82:123312–26
  134. 134. 
    Vembanur S, Patel AJ, Sarupria S, Garde S. 2013. J. Phys. Chem. B 117:3510261–70
  135. 135. 
    Pangali C, Rao M, Berne BJ. 1979. J. Chem. Phys. 71:72982–90
  136. 136. 
    Ghosh T, García AE, Garde S. 2002. J. Chem. Phys. 116:62480–86
  137. 137. 
    Widom B, Bhimalapuram P, Koga K. 2003. Phys. Chem. Chem. Phys. 5:153085–93
  138. 138. 
    ten Wolde PR, Chandler D 2002. PNAS 99:106539–43
  139. 139. 
    Jamadagni SN, Godawat R, Dordick JS, Garde S. 2009. J. Phys. Chem. B 113:134093–101
  140. 140. 
    Pronchik J, He X, Giurleo JT, Talaga DS. 2010. J. Am. Chem. Soc. 132:289797–803
  141. 141. 
    Beverung CJ, Radke CJ, Blanch HW. 1999. Biophys. Chem. 81:159–80
  142. 142. 
    Lamim Ribeiro JM, Tiwary P 2019. J. Chem. Theory Comput. 15:1708–19
  143. 143. 
    Ahalawat N, Bandyopadhyay S, Mondal J. 2020. J. Chem. Phys. 152:7074104
  144. 144. 
    Remsing RC, Xi E, Vembanur S, Sharma S, Debenedetti PG et al. 2015. PNAS 112:278181–86
  145. 145. 
    Huang X, Margulis CJ, Berne BJ. 2003. PNAS 100:2111953–58
  146. 146. 
    Choudhury N, Pettitt BM. 2007. J. Am. Chem. Soc. 129:154847–52
  147. 147. 
    Xu L, Molinero V. 2010. J. Phys. Chem. B 114:217320–28
  148. 148. 
    Sharma S, Debenedetti PG. 2012. PNAS 109:124365–70
  149. 149. 
    Altabet YE, Haji-Akbari A, Debenedetti PG. 2017. PNAS 114:13E2548–55
  150. 150. 
    Xi E, Marks SM, Fialoke S, Patel AJ. 2018. Mol. Simul. 44:13–141124–35
  151. 151. 
    Cerdeiriña CA, Debenedetti PG, Rossky PJ, Giovambattista N. 2011. J. Phys. Chem. Lett. 2:91000–3
  152. 152. 
    Lum K, Luzar A. 1997. Phys. Rev. E 56:6R6283–86
  153. 153. 
    Bolhuis PG, Chandler D. 2000. J. Chem. Phys. 113:188154–60
  154. 154. 
    Leung K, Luzar A, Bratko D. 2003. Phys. Rev. Lett. 90:6065502
  155. 155. 
    Quéré D. 2008. Annu. Rev. Mater. Res. 38:71–99
  156. 156. 
    Papadopoulos P, Mammen L, Deng X, Vollmer D, Butt HJ. 2013. PNAS 110:93254–58
  157. 157. 
    Arunachalam S, Das R, Nauruzbayeva J, Domingues EM, Mishra H. 2019. J. Colloid Interface Sci. 534:156–62
  158. 158. 
    Prakash S, Xi E, Patel AJ. 2016. PNAS 113:205508–13
  159. 159. 
    Widom B. 1967. Science 157:3787375–82
  160. 160. 
    Chandler D. 2017. Annu. Rev. Phys. Chem. 68:19–38
  161. 161. 
    Kauzmann W 1959. Advances in Protein Chemistry 14 CB Anfinsen, ML Anson, K Bailey, JT Edsall 1–63 New York: Academic
  162. 162. 
    Rotenberg B, Patel AJ, Chandler D. 2011. J. Am. Chem. Soc. 133:20521–27
  163. 163. 
    Limmer DT, Willard AP, Madden P, Chandler D. 2013. PNAS 110:114200–5
  164. 164. 
    Kelkar AS, Dallin BC, Van Lehn RC. 2020. J. Phys. Chem. B 124:419103–14
  165. 165. 
    Chen S, Cao Z, Jiang S. 2009. Biomaterials 30:295892–96
  166. 166. 
    Shire SJ, Shahrokh Z, Liu J. 2004. J. Pharm. Sci. 93:61390–402
  167. 167. 
    Chong SH, Ham S. 2014. Angew. Chem. Int. Ed. Engl. 53:153961–64
/content/journals/10.1146/annurev-conmatphys-040220-045516
Loading
/content/journals/10.1146/annurev-conmatphys-040220-045516
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error