1932

Abstract

The quantum-mechanical description of assemblies of particles whose motion is confined to two (or one) spatial dimensions offers many possibilities that are distinct from bosons and fermions. We call such particles anyons. The simplest anyons are parameterized by an angular phase parameter θ. θ = 0, π correspond to bosons and fermions, respectively; at intermediate values, we say that we have fractional statistics. In two dimensions, θ describes the phase acquired by the wave function as two anyons wind around one another counterclockwise. It generates a shift in the allowed values for the relative angular momentum. Composites of localized electric charge and magnetic flux associated with an abelian U(1) gauge group realize this behavior. More complex charge-flux constructions can involve nonabelian and product groups acting on a spectrum of allowed charges and fluxes, giving rise to nonabelian and mutual statistics. Interchanges of nonabelian anyons implement unitary transformations of the wave function within an emergent space of internal states. Anyons of all kinds are described by quantum field theories that include Chern–Simons terms. The crossings of one-dimensional anyons on a ring are unidirectional, such that a fractional phase θ acquired upon interchange gives rise to fractional shifts in the relative momenta between the anyons. The quasiparticle excitations of fractional quantum Hall states have long been predicted to include anyons. Recently, the anyon behavior predicted for quasiparticles in the ν = 1/3 fractional quantum Hall state has been observed in both scattering and interferometric experiments. Excitations within designed systems, notably including superconducting circuits, can exhibit anyon behavior. Such systems are being developed for possible use in quantum information processing.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-040423-014045
2024-03-11
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/15/1/annurev-conmatphys-040423-014045.html?itemId=/content/journals/10.1146/annurev-conmatphys-040423-014045&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Finkelstein D, Rubinstein J. 1968. J. Math. Phys. 9:1762–79
  2. 2.
    Wilczek F. 1990. Fractional Statistics and Anyon Superconductivity Singapore: World Sci.
  3. 3.
    Leinaas JM, Myrheim J. 1977. Nuovo Cim. B 37:1–23
  4. 4.
    Goldin GA, Menikoff R, Sharp DH. 1981. J. Math. Phys. 22:1664–68
  5. 5.
    Feynman RP, Hibbs A. 1965. Quantum Mechanics and Path Integrals New York: McGraw-Hill
  6. 6.
    Kauffman LH. 1993. Knots and Physics Singapore: World Sci.
  7. 7.
    Wilczek F. 1982. Phys. Rev. Lett. 48:171144–46
  8. 8.
    Wilczek F. 1982. Phys. Rev. Lett. 49:14957–59
  9. 9.
    Goldhaber AS, MacKenzie R, Wilczek F. 1989. Mod. Phys. Lett. A 4:21–31
  10. 10.
    Halperin BI. 1984. Phys. Rev. Lett. 52:181583–86 Erratum. 1984. Phys. Rev. Lett. 52:2390(E)
  11. 11.
    Arovas D, Schrieffer JR, Wilczek F. 1984. Phys. Rev. Lett. 53:7722–23
  12. 12.
    Greiter M, Wilczek F. 2021. Phys. Rev. B 104:12L121111
  13. 13.
    Einarsson T. 1990. Phys. Rev. Lett. 64:1995–98
  14. 14.
    Arovas DP, Schrieffer R, Wilczek F, Zee A. 1985. Nucl. Phys. B 251:117–26
  15. 15.
    Dunne GV 1999. Topological Aspects of Low Dimensional Systems 69 Les Houches - Ecole d'Ete de Physique Theorique A Comtet, T Jolicoeur, S Ouvry, F David 177–263 New York: Springer
  16. 16.
    Kalmeyer V, Laughlin RB. 1987. Phys. Rev. Lett. 59:182095–98
  17. 17.
    Kitaev A. 2006. Ann. Phys. 321:2–111
  18. 18.
    Greiter M, Thomale R. 2009. Phys. Rev. Lett. 102:207203
  19. 19.
    Laughlin RB 1990. Fractional Statistics and Anyon Superconductivity F Wilczek Singapore: World Sci.
  20. 20.
    Laughlin RB. 1983. Phys. Rev. Lett. 50:181395–98
  21. 21.
    Haldane FDM, Rezayi EH. 1985. Phys. Rev. B 31:42529–31
  22. 22.
    Tsui DC, Stormer HL, Gossard AC. 1982. Phys. Rev. Lett. 48:221559–62
  23. 23.
    Papić Z, Balram AC 2023. Encyclopedia of Condensed Matter Physics, 2nd edition T Chakraborty Amsterdam: Elsevier Inc.
  24. 24.
    Yoshioka D, Halperin BI, Lee PA. 1983. Phys. Rev. Lett. 50:161219–22
  25. 25.
    Haldane FDM. 1983. Phys. Rev. Lett. 51:7605–8
  26. 26.
    Greiter M. 1997. Physica E 1:1–6
  27. 27.
    Berry MV. 1984. Proc. R. Soc. Lond. A 392:45–57
  28. 28.
    Shapere A, Wilczek F. 1989. Geometric Phases in Physics Singapore: World Scientific
  29. 29.
    Haldane FDM. 1991. Phys. Rev. Lett. 67:8937–40
  30. 30.
    Haldane FDM. 1988. Phys. Rev. Lett. 60:7635–38
  31. 31.
    Shastry BS. 1988. Phys. Rev. Lett. 60:7639–42
  32. 32.
    Haldane FDM, Ha ZNC, Talstra JC, Bernard D, Pasquier V. 1992. Phys. Rev. Lett. 69:2021–25
  33. 33.
    Greiter M. 2011. Mapping of Parent Hamiltonians: From Abelian and non-Abelian Quantum Hall States to Exact Models of Critical Spin Chains. 244 Springer Tracts in Modern Physics. Berlin/Heidelberg: Springer
    [Google Scholar]
  34. 34.
    Korepin VE, Bogoliubov NM, Izergin AG. 1997. Quantum Inverse Scattering Method and Correlation Functions Cambridge, UK: Cambridge Univ. Press
  35. 35.
    Talstra JC, Haldane FDM. 1995. J. Phys. A: Math. Gen. 28:2369–77
  36. 36.
    Greiter M. 2009. Phys. Rev. B 79:6064409
  37. 37.
    Bernevig BA, Giuliano D, Laughlin RB. 2001. Phys. Rev. Lett. 86:153392–95
  38. 38.
    Greiter M, Schuricht D. 2005. Phys. Rev. B 71:22224424
  39. 39.
    Kuramoto Y, Yokoyama H. 1991. Phys. Rev. Lett. 67:101338–41
  40. 40.
    Thomale R, Schuricht D, Greiter M. 2006. Phys. Rev. B 74:2024423
  41. 41.
    Alicea J. 2012. Rep. Prog. Phys. 75:076501
  42. 42.
    Fradkin E, Kadanoff LP. 1980. Nuclear Phys. B 170:1–15
  43. 43.
    Alicea J, Fendley P. 2016. Annu. Rev. Condens. Matter Phys. 7:119–39
  44. 44.
    Moore G, Read N. 1991. Nucl. Phys. B 360:362–96
  45. 45.
    Greiter M, Wen XG, Wilczek F. 1991. Phys. Rev. Lett. 66:3205–8
  46. 46.
    Greiter M, Wen X, Wilczek F. 1992. Nucl. Phys. B 374:567–614
  47. 47.
    Willett R, Eisenstein JP, Störmer HL, Tsui DC, Gossard AC, English JH. 1987. Phys. Rev. Lett. 59:151776–79
  48. 48.
    Schrieffer JR. 1964. Theory of Superconductivity New York: Benjamin/Addison Wesley
  49. 49.
    Greiter M. 2005. Ann. Phys. 319:217–49
  50. 50.
    Nayak C, Wilczek F. 1996. Nucl. Phys. B 479:529–53
  51. 51.
    Read N, Green D. 2000. Phys. Rev. B 61:1510267–97
  52. 52.
    Freedman MH, Kitaev A, Wang Z. 2002. Commun. Math. Phys. 227:587–603
  53. 53.
    Nayak C, Simon SH, Stern A, Freedman M, Das Sarma S. 2008. Rev. Mod. Phys. 80:31083–159
  54. 54.
    Stern A. 2010. Nature 464:187–93
  55. 55.
    de Gennes PG. 1966. Superconductivity of Metals and Alloys New York: Benjamin/Addison Wesley
  56. 56.
    Ivanov DA. 2001. Phys. Rev. Lett. 86:2268–71
  57. 57.
    Read N, Rezayi E. 1999. Phys. Rev. B 59:128084–92
  58. 58.
    Trebst S, Troyer M, Wang Z, Ludwig AWW. 2008. Prog. Theor. Phys. Suppl. 176:384–407
  59. 59.
    Bonesteel N 2023. Encyclopedia of Condensed Matter Physics T Chakraborty Amsterdam: Elsevier, 2nd ed..
  60. 60.
    Ardonne E, Schoutens K. 1999. Phys. Rev. Lett. 82:255096–99
  61. 61.
    Vaezi A, Barkeshli M. 2014. Phys. Rev. Lett. 113:23236804
  62. 62.
    Bouwknegt P, Schoutens K. 1999. Nucl. Phys. B 547:501–37
  63. 63.
    Greiter M, Haldane FDM, Thomale R. 2019. Phys. Rev. B 100:11115107
  64. 64.
    Bartolomei H, Kumar M, Bisognin R, Marguerite A, Berroir JM et al. 2020. Science 368:6487173–77
  65. 65.
    Hanbury Brown R, Twiss RQ 1956. Nature 178:45411046–48
  66. 66.
    Baym G. 1998. Acta Phys. Pol. B 29:71839–84
  67. 67.
    Vishveshwara S. 2003. Phys. Rev. Lett. 91:19196803
  68. 68.
    Rosenow B, Levkivskyi IP, Halperin BI. 2016. Phys. Rev. Lett. 116:15156802
  69. 69.
    Nakamura J, Liang S, Gardner GC, Manfra MJ. 2020. Nat. Phys. 16:931–36
  70. 70.
    Nakamura J, Liang S, Gardner GC, Manfra MJ. 2022. Nat. Commun. 13:344
  71. 71.
    Nakamura J, Liang S, Gardner GC, Manfra MJ. 2023. arXiv:2304.12415
  72. 72.
    Lu CY, Gao WB, Gühne O, Zhou XQ, Chen ZB, Pan JW. 2009. Phys. Rev. Lett. 102:3030502
  73. 73.
    Dai HN, Yang B, Reingruber A, Sun H, Xu XF et al. 2017. Nat. Phys. 13:1195–200
  74. 74.
    Song C, Xu D, Zhang P, Wang J, Guo Q et al. 2018. Phys. Rev. Lett. 121:3030502
  75. 75.
    Andersen TI, Lensky YD, Kechedzhi K, Drozdov I, Bengtsson A et al. 2022. arXiv:2210.10255
  76. 76.
    Karzig T, Knapp C, Lutchyn RM, Bonderson P, Hastings MB et al. 2017. Phys. Rev. B 95:23235305
  77. 77.
    Kitaev AY. 2001. Phys.–Usp. 44:10S131–36
  78. 78.
    Regnault N, Bernevig BA. 2011. Phys. Rev. X 1:2021014
  79. 79.
    Savary L, Balents L. 2016. Rep. Prog. Phys. 80:016502
  80. 80.
    Kitaev AY. 2003. Ann. Phys. 303:2–30
  81. 81.
    Wigner EP. 1948. Phys. Rev. 73:91002–9
  82. 82.
    Morampudi SC, Turner AM, Pollmann F, Wilczek F. 2017. Phys. Rev. Lett. 118:22227201
  83. 83.
    Greiter M, Wilczek F. 1990. Mod. Phys. Lett. B 4:1063–69
  84. 84.
    Hansson TH, Kivelson SA. 2022. Frank Wilczek: 50 Years of Theoretical Physics World Sci.
  85. 85.
    Nigg D, Müller M, Martinez EA, Schindler P, Hennrich M et al. 2014. Science 345:6194302–5
  86. 86.
    Radu E, Volkov MS. 2008. Phys. Rep. 468:4101–51
  87. 87.
    Garaud J, Niemi AJ. 2022. J. High Energy Phys. 2022:9154
  88. 88.
    Hasegawa A, Kodama Y. 1995. Solitons in Optical Communications Oxford: Clarendon
/content/journals/10.1146/annurev-conmatphys-040423-014045
Loading
/content/journals/10.1146/annurev-conmatphys-040423-014045
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error