1932

Abstract

Inversion and time reversal are essential symmetries for the structure of Cooper pairs in superconductors. The loss of one or both leads to modifications to this structure and can change the properties of the superconducting phases in profound ways. Superconductivity in materials lacking inversion symmetry, or noncentrosymmetric materials, has become an important topic. These materials show unusual magnetic and magnetoelectric properties and can host topological superconductivity. Recently, crystal structures with local, but not global, inversion-symmetry breaking have attracted attention. Here, superconductivity can exhibit phenomena not naively expected in centrosymmetric materials. In this review, we first introduce the concept of locally noncentrosymmetric crystals and different material realizations. We then discuss consequences of such local symmetry breaking on the normal state electronic structure and the classification of superconducting order parameters. Finally, we review the expected and, in parts, already observed phenomenology of unconventional superconductivity and possible topological superconducting phases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-040521-042511
2023-03-10
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/14/1/annurev-conmatphys-040521-042511.html?itemId=/content/journals/10.1146/annurev-conmatphys-040521-042511&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Anderson PW. 1959. J. Phys. Chem. Solids 11:1–226–30
    [Google Scholar]
  2. 2.
    Anderson PW. 1984. Phys. Rev. B 30:74000–2
    [Google Scholar]
  3. 3.
    Bauer E, Hilscher G, Michor H, Paul C, Scheidt EW et al. 2004. Phys. Rev. Lett. 92:2027003
    [Google Scholar]
  4. 4.
    Gor'kov LP, Rashba EI 2001. Phys. Rev. Lett. 87:3037004
    [Google Scholar]
  5. 5.
    Frigeri PA, Agterberg DF, Koga A, Sigrist M. 2004. Phys. Rev. Lett. 92:9097001 See also Erratum 93, 099903(E) (2004)
    [Google Scholar]
  6. 6.
    Frigeri PA, Agterberg DF, Sigrist M. 2004. New J. Phys. 6:1115
    [Google Scholar]
  7. 7.
    Edel'shtein V. 1989. Sov. Phys. JETP 68:61244–49
    [Google Scholar]
  8. 8.
    Mineev K, Samokhin K. 1994. JETP 78:401
    [Google Scholar]
  9. 9.
    Kaur RP, Agterberg DF, Sigrist M. 2005. Phys. Rev. Lett. 94:13137002
    [Google Scholar]
  10. 10.
    Sato M, Takahashi Y, Fujimoto S. 2009. Phys. Rev. Lett. 103:2020401
    [Google Scholar]
  11. 11.
    Sato M, Fujimoto S. 2009. Phys. Rev. B 79:9094504
    [Google Scholar]
  12. 12.
    Schnyder AP, Brydon PMR. 2015. J. Phys.: Condens. Matter 27:24243201
    [Google Scholar]
  13. 13.
    Chiu CK, Teo JCY, Schnyder AP, Ryu S. 2016. Rev. Mod. Phys. 88:3035005
    [Google Scholar]
  14. 14.
    Baltensperger W, Strässler S. 1962. Phys. kondensierten Mater. 1:120–26
    [Google Scholar]
  15. 15.
    Dzyaloshinsky I. 1958. J. Phys. Chem. Solids 4:4241–55
    [Google Scholar]
  16. 16.
    Moriya T. 1960. Phys. Rev. 120:191–98
    [Google Scholar]
  17. 17.
    Fischer MH, Sigrist M. 2010. Phys. Rev. B 81:6064435
    [Google Scholar]
  18. 18.
    Fischer MH, Loder F, Sigrist M. 2011. Phys. Rev. B 84:184533
    [Google Scholar]
  19. 19.
    Zhang X, Liu Q, Luo JW, Freeman AJ, Zunger A. 2014. Nat. Phys. 10:5387–93
    [Google Scholar]
  20. 20.
    Železný J, Gao H, Výborný K, Zemen J, Mašek J et al. 2014. Phys. Rev. Lett. 113:157201
    [Google Scholar]
  21. 21.
    Wadley P, Howells B, Železný J, Andrews C, Hills V et al. 2016. Science 351:6273587–90
    [Google Scholar]
  22. 22.
    Watanabe H, Yanase Y. 2017. Phys. Rev. B 96:6064432
    [Google Scholar]
  23. 23.
    Shiomi Y, Watanabe H, Masuda H, Takahashi H, Yanase Y, Ishiwata S. 2019. Phys. Rev. Lett. 122:12127207
    [Google Scholar]
  24. 24.
    Zhang Y, Holder T, Ishizuka H, de Juan F, Nagaosa N et al. 2019. Nat. Commun. 10:13783
    [Google Scholar]
  25. 25.
    Ahn J, Guo GY, Nagaosa N. 2020. Phys. Rev. X 10:4041041
    [Google Scholar]
  26. 26.
    Watanabe H, Yanase Y. 2021. Phys. Rev. X 11:1011001
    [Google Scholar]
  27. 27.
    Dresselhaus M, Dresselhaus G, Jorio A. 2007. Group Theory: Application to the Physics of Condensed Matter Berlin: Springer-Verlag
    [Google Scholar]
  28. 28.
    Sigrist M, Ueda K. 1991. Rev. Mod. Phys. 63:2239–311
    [Google Scholar]
  29. 29.
    Miles P, Kennedy S, McIntyre G, Gu G, Russell G, Koshizuka N 1998. Phys. C: Superconductivity 294:3275–88
    [Google Scholar]
  30. 30.
    Gotlieb K, Lin CY, Serbyn M, Zhang W, Smallwood CL et al. 2018. Science 362:64201271–75
    [Google Scholar]
  31. 31.
    Atkinson WA. 2020. Phys. Rev. B 101:2024513
    [Google Scholar]
  32. 32.
    Lu X, Sénéchal D. 2021. Phys. Rev. B 104:2054512
    [Google Scholar]
  33. 33.
    Madar R, Chaudouet P, Senateur J, Zemni S, Tranqui D. 1987. J. Less Common Metals 133:2303–11
    [Google Scholar]
  34. 34.
    Hoshi K, Kurihara R, Goto Y, Tokunaga M, Mizuguchi Y. 2022. Sci. Rep. 12:1288
    [Google Scholar]
  35. 35.
    Shishido H, Shibauchi T, Yasu K, Kato T, Kontani H et al. 2010. Science 327:5968980–83
    [Google Scholar]
  36. 36.
    Nakosai S, Tanaka Y, Nagaosa N. 2012. Phys. Rev. Lett. 108:147003
    [Google Scholar]
  37. 37.
    Wu SL, Sumida K, Miyamoto K, Taguchi K, Yoshikawa T et al. 2017. Nat. Commun. 8:11919
    [Google Scholar]
  38. 38.
    Hor YS, Williams AJ, Checkelsky JG, Roushan P, Seo J et al. 2010. Phys. Rev. Lett. 104:5057001
    [Google Scholar]
  39. 39.
    Wenski G, Mewis A. 1986. Z. Anorganische Allgemeine Chem. 535:4110–22
    [Google Scholar]
  40. 40.
    Wilson J, Yoffe A. 1969. Adv. Phys. 18:73193–335
    [Google Scholar]
  41. 41.
    Devarakonda A, Inoue H, Fang S, Ozsoy-Keskinbora C, Suzuki T et al. 2020. Science 370:6513231–36
    [Google Scholar]
  42. 42.
    Johrendt D, Hosono H, Hoffmann RD, Pöttgen R. 2011. Z. Krist. 226:4435–46
    [Google Scholar]
  43. 43.
    Hutanu V, Deng H, Ran S, Fuhrman WT, Thoma H, Butch NP. 2020. Acta Crystallogr. Sect. B 76:1137–43
    [Google Scholar]
  44. 44.
    Joynt R, Taillefer L. 2002. Rev. Mod. Phys. 74:1235–94
    [Google Scholar]
  45. 45.
    Canepa F, Manfrinetti P, Pani M, Palenzona A. 1996. J. Alloys Compd. 234:2225–30
    [Google Scholar]
  46. 46.
    Ivanov AA, Ivanov VG, Menushenkov AP, Wilhelm F, Rogalev A et al. 2018. J. Supercond. Novel Magn. 31:3663–70
    [Google Scholar]
  47. 47.
    Nishikubo Y, Kudo K, Nohara M. 2011. J. Phys. Soc. Jpn. 80:5055002
    [Google Scholar]
  48. 48.
    Youn SJ, Fischer MH, Rhim SH, Sigrist M, Agterberg DF. 2012. Phys. Rev. B 85:220505
    [Google Scholar]
  49. 49.
    Di Salvo F, Bagley B, Voorhoeve J, Waszczak J. 1973. J. Phys. Chem. Solids 34:81357–62
    [Google Scholar]
  50. 50.
    Biswas PK, Luetkens H, Neupert T, Stürzer T, Baines C et al. 2013. Phys. Rev. B 87:180503
    [Google Scholar]
  51. 51.
    Ribak A, Skiff RM, Mograbi M, Rout PK, Fischer MH et al. 2020. Sci. Adv. 6:13aax9480
    [Google Scholar]
  52. 52.
    Fischer MH. 2013. New J. Phys. 15:7073006
    [Google Scholar]
  53. 53.
    Cvetkovic V, Vafek O. 2013. Phys. Rev. B 88:13134510
    [Google Scholar]
  54. 54.
    Ran S, Eckberg C, Ding QP, Furukawa Y, Metz T et al. 2019. Science 365:6454684–87
    [Google Scholar]
  55. 55.
    Aoki D, Brison JP, Flouquet J, Ishida K, Knebel G et al. 2022. J. Phys.: Condens. Matter 34:24243002
    [Google Scholar]
  56. 56.
    Aoki D, Ishida K, Flouquet J. 2019. J. Phys. Soc. Jpn. 88:2022001
    [Google Scholar]
  57. 57.
    Anderson PW. 1985. Phys. Rev. B 32:1499–99
    [Google Scholar]
  58. 58.
    Fu L. 2015. Phys. Rev. Lett. 115:2026401
    [Google Scholar]
  59. 59.
    Smidman M, Salamon MB, Yuan HQ, Agterberg DF. 2017. Rep. Prog. Phys. 80:3036501
    [Google Scholar]
  60. 60.
    Sigrist M, Agterberg DF, Fischer MH, Goryo J, Loder F et al. 2014. J. Phys. Soc. Jpn. 83:6061014
    [Google Scholar]
  61. 61.
    Yanase Y. 2016. Phys. Rev. B 94:17174502
    [Google Scholar]
  62. 62.
    Yanase Y, Shiozaki K. 2017. Phys. Rev. B 95:22224514
    [Google Scholar]
  63. 63.
    Shishidou T, Suh HG, Brydon PMR, Weinert M, Agterberg DF. 2021. Phys. Rev. B 103:10104504
    [Google Scholar]
  64. 64.
    Kimura N, Ito K, Aoki H, Uji S, Terashima T. 2007. Phys. Rev. Lett. 98:19197001
    [Google Scholar]
  65. 65.
    Settai R, Miyauchi Y, Takeuchi T, Lévy F, Sheikin I, Ōnuki Y. 2008. J. Phys. Soc. Jpn. 77:7073705
    [Google Scholar]
  66. 66.
    Skurativska A, Sigrist M, Fischer MH. 2021. Phys. Rev. Res. 3:3033133
    [Google Scholar]
  67. 67.
    de la Barrera SC, Sinko MR, Gopalan DP, Sivadas N, Seyler KL et al. 2018. Nat. Commun. 9:11427
    [Google Scholar]
  68. 68.
    Chan YC, Yip KY, Cheung YW, Chan YT, Niu Q et al. 2018. Phys. Rev. B 97:104509
    [Google Scholar]
  69. 69.
    Shao J, Liu Z, Yao X, Zhang L, Pi L et al. 2014. EPL (Europhys. Lett.) 107:337006
    [Google Scholar]
  70. 70.
    Kase N, Terui Y, Nakano T, Takeda N. 2017. Phys. Rev. B 96:21214506
    [Google Scholar]
  71. 71.
    Mizukami Y, Shishido H, Shibauchi T, Shimozawa M, Yasumoto S et al. 2011. Nat. Phys. 7:11849–53
    [Google Scholar]
  72. 72.
    Shimozawa M, Goh SK, Shibauchi T, Matsuda Y. 2016. Rep. Prog. Phys. 79:7074503
    [Google Scholar]
  73. 73.
    Maruyama D, Sigrist M, Yanase Y. 2012. J. Phys. Soc. Jpn. 81:3034702
    [Google Scholar]
  74. 74.
    Clogston AM. 1962. Phys. Rev. Lett. 9:6266–67
    [Google Scholar]
  75. 75.
    Chandrasekhar BS. 1962. Appl. Phys. Lett. 1:17–8
    [Google Scholar]
  76. 76.
    Maki K. 1966. Phys. Rev. 148:1362–69
    [Google Scholar]
  77. 77.
    Yoshida T, Sigrist M, Yanase Y. 2012. Phys. Rev. B 86:134514
    [Google Scholar]
  78. 78.
    Khim S, Landaeta JF, Banda J, Bannor N, Brando M et al. 2021. Science 373:65581012–16
    [Google Scholar]
  79. 79.
    Möckli D, Yanase Y, Sigrist M. 2018. Phys. Rev. B 97:144508
    [Google Scholar]
  80. 80.
    Schertenleib EG, Fischer MH, Sigrist M. 2021. Phys. Rev. Res. 3:2023179
    [Google Scholar]
  81. 81.
    Nogaki K, Daido A, Ishizuka J, Yanase Y. 2021. Phys. Rev. Res. 3:3L032071
    [Google Scholar]
  82. 82.
    Adenwalla S, Lin SW, Ran QZ, Zhao Z, Ketterson JB et al. 1990. Phys. Rev. Lett. 65:182298–301
    [Google Scholar]
  83. 83.
    Michaeli K, Potter AC, Lee PA. 2012. Phys. Rev. Lett. 108:117003
    [Google Scholar]
  84. 84.
    Barzykin V, Gor'kov LP 2002. Phys. Rev. Lett. 89:227002
    [Google Scholar]
  85. 85.
    Fulde P, Ferrell RA. 1964. Phys. Rev. 135:3AA550–63
    [Google Scholar]
  86. 86.
    Agterberg DF. 2003. Phys. C: Supercond. 387:113–16
    [Google Scholar]
  87. 87.
    Edelstein VM. 1996. J. Phys.: Condens. Matter 8:3339–49
    [Google Scholar]
  88. 88.
    Aoyama K, Sigrist M. 2012. Phys. Rev. Lett. 109:23237007
    [Google Scholar]
  89. 89.
    Larkin A, Ovchinnikov Y. 1965. Sov. Phys. JETP 20:762
    [Google Scholar]
  90. 90.
    Yoshida T, Sigrist M, Yanase Y. 2013. J. Phys. Soc. Jpn. 82:7074714
    [Google Scholar]
  91. 91.
    Masutomi R, Okamoto T, Yanase Y. 2020. Phys. Rev. B 101:18184502
    [Google Scholar]
  92. 92.
    Watanabe T, Yoshida T, Yanase Y. 2015. Phys. Rev. B 92:17174502
    [Google Scholar]
  93. 93.
    Ryu S, Schnyder AP, Furusaki A, Ludwig AWW. 2010. N. J. Phys. 12:6065010
    [Google Scholar]
  94. 94.
    Schnyder AP, Ryu S, Furusaki A, Ludwig AWW. 2008. Phys. Rev. B 78:19195125
    [Google Scholar]
  95. 95.
    Fu L, Berg E. 2010. Phys. Rev. Lett. 105:097001
    [Google Scholar]
  96. 96.
    Fu L, Kane CL. 2007. Phys. Rev. B 76:4045302
    [Google Scholar]
  97. 97.
    Sato M. 2010. Phys. Rev. B 81:22220504
    [Google Scholar]
  98. 98.
    Skurativska A, Neupert T, Fischer MH. 2020. Phys. Rev. Res. 2:1013064
    [Google Scholar]
  99. 99.
    Ono S, Yanase Y, Watanabe H. 2019. Phys. Rev. Res. 1:1013012
    [Google Scholar]
  100. 100.
    Ono S, Po HC, Watanabe H. 2020. Sci. Adv. 6:18eaaz8367
    [Google Scholar]
  101. 101.
    Yoshida T, Sigrist M, Yanase Y. 2015. Phys. Rev. Lett. 115:027001
    [Google Scholar]
  102. 102.
    Shiozaki K, Sato M. 2014. Phys. Rev. B 90:16165114
    [Google Scholar]
  103. 103.
    Fidkowski L, Kitaev A. 2010. Phys. Rev. B 81:13134509
    [Google Scholar]
  104. 104.
    Yoshida T, Daido A, Yanase Y, Kawakami N. 2017. Phys. Rev. Lett. 118:14147001
    [Google Scholar]
  105. 105.
    Shiozaki K, Sato M, Gomi K. 2016. Phys. Rev. B 93:19195413
    [Google Scholar]
  106. 106.
    Scheurer MS, Agterberg DF, Schmalian J. 2017. NPJ Quantum Mater. 2:19
    [Google Scholar]
  107. 107.
    Fischer MH, Neupert T, Platt C, Schnyder AP, Hanke W et al. 2014. Phys. Rev. B 89:020509
    [Google Scholar]
  108. 108.
    Fischer MH, Goryo J. 2015. J. Phys. Soc. Jpn. 84:5054705
    [Google Scholar]
  109. 109.
    Xie YM, Zhou BT, Law KT. 2020. Phys. Rev. Lett. 125:10107001
    [Google Scholar]
  110. 110.
    Bradley CJ, Cracknell AP. 1972. The Mathematical Theory of Symmetry in Solids Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  111. 111.
    Sumita S, Yanase Y. 2016. Phys. Rev. B 93:22224507
    [Google Scholar]
  112. 112.
    Cavanagh DC, Shishidou T, Weinert M, Brydon PMR, Agterberg DF. 2022. Phys. Rev. B 105:2L020505
    [Google Scholar]
  113. 113.
    Micklitz T, Norman MR. 2009. Phys. Rev. B 80:10100506
    [Google Scholar]
  114. 114.
    Blount EI. 1985. Phys. Rev. B 32:52935–44
    [Google Scholar]
  115. 115.
    Daido A, Yoshida T, Yanase Y. 2019. Phys. Rev. Lett. 122:22227001
    [Google Scholar]
  116. 116.
    Ishizuka J, Yanase Y. 2018. Phys. Rev. B 98:22224510
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-040521-042511
Loading
/content/journals/10.1146/annurev-conmatphys-040521-042511
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error