1932

Abstract

We review the literature on swimming in complex fluids. A classification is proposed by comparing the length- and timescales of a swimmer with those of nearby obstacles, interpreted broadly, extending from rigid or soft confining boundaries to molecules that confer the bulk fluid with complex stresses. A third dimension in the classification is the concentration of swimmers, which incorporates fluids whose complexity arises purely by the collective motion of swimming organisms. For each of the eight system types that we identify, we provide a background and describe modern research findings. Although some types have seen a great deal of attention for decades, others remain uncharted waters still open and awaiting exploration.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-040821-112149
2023-03-10
2025-04-20
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/14/1/annurev-conmatphys-040821-112149.html?itemId=/content/journals/10.1146/annurev-conmatphys-040821-112149&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ganias K, Mezarli C, Voultsiadou E 2017. Fish Fisheries 18:103855
    [Google Scholar]
  2. 2.
    Lighthill J 1976. SIAM Rev. 18:161230
    [Google Scholar]
  3. 3.
    Lauga E, Powers T. 2009. Rep. Prog. Phys. 72:096601
    [Google Scholar]
  4. 4.
    Elgeti J, Winkler RG, Gompper G. 2015. Rep. Prog. Phys. 78:056601
    [Google Scholar]
  5. 5.
    Lauga E. 2016. Annu. Rev. Fluid Mech. 48:10530
    [Google Scholar]
  6. 6.
    Gompper G, Winkler RG, Speck T, Solon A, Nardini C et al. 2020. J. Phys. Condens. Matter 32:193001
    [Google Scholar]
  7. 7.
    Spagnolie SE 2015. Complex Fluids in Biological Systems: Experiment, Theory, and Computation New York: Springer
    [Google Scholar]
  8. 8.
    Purcell EM. 1977. Am. J. Phys. 45:311
    [Google Scholar]
  9. 9.
    Childress S. 1981. Mechanics of Swimming and Flying Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  10. 10.
    Larson RG. 1999. The Structure and Rheology of Complex Fluids, Vol. 150 Topics in Chemical Engineering, ed. KE Gubbins New York: Oxford Univ. Press
    [Google Scholar]
  11. 11.
    Hatwalne Y, Ramaswamy S, Rao M, Simha RA. 2004. Phys. Rev. Lett. 92:118101
    [Google Scholar]
  12. 12.
    Ishikawa T, Pedley TJ. 2007. J. Fluid Mech. 588:399435
    [Google Scholar]
  13. 13.
    Haines BM, Aranson IS, Berlyand L, Karpeev DA. 2008. Phys. Biol. 5:046003
    [Google Scholar]
  14. 14.
    Sokolov A, Aranson IS. 2009. Phys. Rev. Lett. 103:148101
    [Google Scholar]
  15. 15.
    Saintillan D. 2018. Annu. Rev. Fluid Mech. 50:56392
    [Google Scholar]
  16. 16.
    Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G, Volpe G. 2016. Rev. Mod. Phys. 88:045006
    [Google Scholar]
  17. 17.
    Asimov I. 1966. Fantastic Voyage New York: Bantam Dell
    [Google Scholar]
  18. 18.
    Reiner M. 1964. Phys. Today 17:62
    [Google Scholar]
  19. 19.
    Brennen C, Winet H. 1977. Annu. Rev. Fluid Mech. 9:33998
    [Google Scholar]
  20. 20.
    Taylor GI. 1951. Proc. Roy. Soc. A 209:44761
    [Google Scholar]
  21. 21.
    Blake JR. 1971. J. Fluid Mech. 46:199208
    [Google Scholar]
  22. 22.
    Leiderman K, Olson SD. 2016. Phys. Fluids 28:021902
    [Google Scholar]
  23. 23.
    Ho N, Leiderman K, Olson S. 2008. J. Fluid Mech. 864:1088124
    [Google Scholar]
  24. 24.
    Nganguia H, Pak OS. 2018. J. Fluid Mech. 855:55473
    [Google Scholar]
  25. 25.
    Leshansky AM. 2009. Phys. Rev. E 80:051911
    [Google Scholar]
  26. 26.
    Jung S 2010. Phys. Fluids 22:031903
    [Google Scholar]
  27. 27.
    Hewitt DR, Balmforth NJ. 2017. J. Fluid Mech. 828:3356
    [Google Scholar]
  28. 28.
    Kim S, Karrila SJ. 2013. Microhydrodynamics: Principles and Selected Applications New York: Dover
    [Google Scholar]
  29. 29.
    Chen Y, Lordi N, Taylor M, Pak OS. 2020. Phys. Rev. E 102:043111
    [Google Scholar]
  30. 30.
    Hewitt D. 2022. Sci. Talks 3:100029
    [Google Scholar]
  31. 31.
    Maladen RD, Ding Y, Li C, Goldman DI. 2009. Science 325:31418
    [Google Scholar]
  32. 32.
    Hosoi A, Goldman D. 2015. Annu. Rev. Fluid Mech 47:43153
    [Google Scholar]
  33. 33.
    Krieger MS, Spagnolie SE, Powers T. 2015. Soft Matter 11:911525
    [Google Scholar]
  34. 34.
    Cupples G, Dyson RJ, Smith DJ. 2017. J. Fluid Mech. 812:50124
    [Google Scholar]
  35. 35.
    Shi J, Powers TR. 2017. Phys. Rev. Fluids 2:123102
    [Google Scholar]
  36. 36.
    Suarez SS, Pacey AA. 2006. Hum. Reprod. Update 12:2337
    [Google Scholar]
  37. 37.
    Fauci LJ, Dillon R. 2006. Annu. Rev. Fluid Mech. 38:37194
    [Google Scholar]
  38. 38.
    Morozov A, Spagnolie SE. 2015. See Reference 7 352
  39. 39.
    Vélez-Cordero JR, Lauga E. 2013. J. Non-Newtonian Fluid Mech. 199:3750
    [Google Scholar]
  40. 40.
    Vasquez PA, Forest MG. 2015. See Reference 7 53110
  41. 41.
    Gagnon DA, Keim NC, Arratia PE. 2014. J. Fluid Mech. 758:R3
    [Google Scholar]
  42. 42.
    Demir E, Lordi N, Ding Y, Pak OS. 2020. Phys. Rev. Fluids 5:111301
    [Google Scholar]
  43. 43.
    Li G, Ardekani AM. 2015. J. Fluid Mech. 784:R4
    [Google Scholar]
  44. 44.
    Park JS, Kim D, Shin JH, Weitz DA. 2016. Soft Matter 12:189297
    [Google Scholar]
  45. 45.
    Gómez S, Godínez FA, Lauga E, Zenit R. 2017. J. Fluid Mech. 812:R3
    [Google Scholar]
  46. 46.
    Man Y, Lauga E. 2015. Phys. Rev. E 92:023004
    [Google Scholar]
  47. 47.
    Datt C, Zhu L, Elfring GJ, Pak OS. 2015. J. Fluid Mech. 784:R1
    [Google Scholar]
  48. 48.
    Suarez SS, Dai X. 1992. Biol. Reprod. 46:68691
    [Google Scholar]
  49. 49.
    Shen XN, Arratia PE. 2011. Phys. Rev. Lett. 106:208101
    [Google Scholar]
  50. 50.
    Ho HC, Suarez SS 2001. Reproduction 122:51926
    [Google Scholar]
  51. 51.
    Ives TR, Morozov A. 2017. Phys. Fluids 29:121612
    [Google Scholar]
  52. 52.
    Li L, Spagnolie SE. 2015. Phys. Fluids 27:021902
    [Google Scholar]
  53. 53.
    Teran J, Fauci L, Shelley M 2010. Phys. Rev. Lett. 104:038101
    [Google Scholar]
  54. 54.
    Thomases B, Guy RD. 2014. Phys. Rev. Lett. 113:098102
    [Google Scholar]
  55. 55.
    Liu B, Powers TR, Breuer KS. 2011. PNAS 108:19516
    [Google Scholar]
  56. 56.
    Spagnolie SE, Liu B, Powers TR. 2013. Phys. Rev. Lett. 111:068101
    [Google Scholar]
  57. 57.
    Martinez VA, Schwarz-Linek J, Reufer M, Wilson LG, Morozov AN, Poon WC. 2014. PNAS 111:1777176
    [Google Scholar]
  58. 58.
    Narinder N, Gomez-Solano JR, Bechinger C. 2019. New J. Phys. 21:093058
    [Google Scholar]
  59. 59.
    Gomez-Solano JR, Blokhuis A, Bechinger C. 2016. Phys. Rev. Lett. 116:138301
    [Google Scholar]
  60. 60.
    Natale G, Datt C, Hatzikiriakos SG, Elfring GJ. 2017. Phys. Fluids 29:123102
    [Google Scholar]
  61. 61.
    Sznitman J, Arratia P. 2015. See Reference 7 24581
  62. 62.
    Elfring GJ, Lauga E. 2015. See Reference 7 283317
  63. 63.
    Li G, Lauga E, Ardekani AM. 2021. J. Non-Newtonian Fluid Mech. 297:104655
    [Google Scholar]
  64. 64.
    Patteson AE, Gopinath A, Arratia PE. 2016. Curr. Opin. Colloid Interface Sci. 21:8696
    [Google Scholar]
  65. 65.
    Lauga E. 2007. Phys. Fluids 19:083104
    [Google Scholar]
  66. 66.
    Balmforth NJ, Coombs D, Pachmann S 2010. Q. J. Mech. Appl. Math. 63:26794
    [Google Scholar]
  67. 67.
    Fu HC, Powers TR, Wolgemuth HC. 2007. Phys. Rev. Lett. 99:258101105
    [Google Scholar]
  68. 68.
    Fu HC, Wolgemuth CW, Powers TR. 2009. Phys. Fluids 21:033102
    [Google Scholar]
  69. 69.
    Elfring GJ, Goyal G. 2016. J. Non-Newtonian Fluid Mech. 234:814
    [Google Scholar]
  70. 70.
    Riley EE, Lauga E. 2014. Europhys. Lett. 108:34003
    [Google Scholar]
  71. 71.
    Riley EE, Lauga E. 2015. J. Theor. Biol. 382:34555
    [Google Scholar]
  72. 72.
    Pak OS, Normand T, Lauga E 2010. Phys. Rev. E 81:036312
    [Google Scholar]
  73. 73.
    Li GJ, Karimi A, Ardekani AM. 2014. Rheol. Acta 53:91126
    [Google Scholar]
  74. 74.
    Binagia JP, Phoa A, Housiadas KD, Shaqfeh ESG. 2020. J. Fluid Mech. 900:A4
    [Google Scholar]
  75. 75.
    Binagia JP, Shaqfeh ESG. 2021. Phys. Rev. Fluids 6:5053301
    [Google Scholar]
  76. 76.
    Berg HC, Turner L. 1979. Nature 278:34951
    [Google Scholar]
  77. 77.
    Kimsey RB, A. S 1990. J. Infect. Dis. 162:12058
    [Google Scholar]
  78. 78.
    Zhang Y, Li G, Ardekani AM. 2018. Phys. Rev. Fluids 3:2023101
    [Google Scholar]
  79. 79.
    Pak OS, Zhu L, Brandt L, Lauga E. 2012. Phys. Fluids 24:10103102
    [Google Scholar]
  80. 80.
    Wu Z, Chen Y, Mukasa D, Pak OS, Gao W. 2020. Chem. Soc. Rev. 49:228088112
    [Google Scholar]
  81. 81.
    Kroo LA, Binagia JP, Eckman N, Prakash M, Shaqfeh ESG. 2022. J. Fluid Mech. 944:A20
    [Google Scholar]
  82. 82.
    Venugopalan PL, Esteban-Fernández de Ávila B, Pal M, Ghosh A, Wang J 2020. ACS Nano 14:8942339
    [Google Scholar]
  83. 83.
    Petrou G, Crouzier T. 2018. Biomater. Sci. 6:9228297
    [Google Scholar]
  84. 84.
    Fu HC, Shenoy VB, Powers TR. 2010. Europhys. Lett. 91:24002
    [Google Scholar]
  85. 85.
    Du J, Keener JP, Guy RD, Fogelson AL. 2012. Phys. Rev. E 85:036304
    [Google Scholar]
  86. 86.
    Schamel D, Mark AG, Gibbs JG, Miksch C, Morozov KI et al. 2014. ACS Nano 8:8794801
    [Google Scholar]
  87. 87.
    Celli JP, Turner BS, Afdhal NH, Keates S, Ghiran I et al. 2009. PNAS 106:1432126
    [Google Scholar]
  88. 88.
    Chrétien FC. 2003. Acta Obstet. Gynecol. Scand. 82:44961
    [Google Scholar]
  89. 89.
    Wróbel JK, Lynch S, Barrett A, Fauci L, Cortez R 2016. J. Fluid Mech. 792:77597
    [Google Scholar]
  90. 90.
    Viney C, Huber AE, Verdugo P. 1993. Macromolecules 26:85255
    [Google Scholar]
  91. 91.
    Zhou S, Sokolov A, Lavrentovich OD, Aranson IS. 2014. PNAS 111:126570
    [Google Scholar]
  92. 92.
    Mushenheim PC, Trivedi RR, Weibel DB, Abbott NL. 2014. Biophys. J. 107:25565
    [Google Scholar]
  93. 93.
    Trivedi RR, Maeda R, Abbott NL, Spagnolie SE, Weibel DB. 2015. Soft Matter 11:84048
    [Google Scholar]
  94. 94.
    Genkin MM, Sokolov A, Lavrentovich OD, Aranson IS. 2017. Phys. Rev. X 7:011029
    [Google Scholar]
  95. 95.
    Krieger MS, Spagnolie SE, Powers TR. 2019. J. Non-Newtonian Fluid Mech. 273:104185
    [Google Scholar]
  96. 96.
    Lin Z, Chen S, Gao T 2021. J. Fluid Mech. 921:A25
    [Google Scholar]
  97. 97.
    Nayani K, Córdova-Figueroa UM, Abbott NL. 2019. Langmuir 36:694856
    [Google Scholar]
  98. 98.
    De Gennes PG, Prost J. 1993. The Physics of Liquid Crystals Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  99. 99.
    Peng C, Turiv T, Guo Y, Wei QH, Lavrentovich OD. 2016. Science 354:88285
    [Google Scholar]
  100. 100.
    Katz DF. 1974. J. Fluid Mech. 64:3349
    [Google Scholar]
  101. 101.
    Rothschild LJ. 1963. Nature 198:122122
    [Google Scholar]
  102. 102.
    Smith DJ, Blake JR. 2009. Math. Sci. 34:7487
    [Google Scholar]
  103. 103.
    Bianchi S, Saglimbeni F, Di Leonardo R. 2017. Phys. Rev. X 7:011010
    [Google Scholar]
  104. 104.
    Kantsler V, Dunkel J, Polin M, Goldstein RE. 2013. PNAS 110:118792
    [Google Scholar]
  105. 105.
    Brosseau Q, Usabiaga FB, Lushi E, Wu Y, Ristroph L et al. 2021. Soft Matter 17:6597602
    [Google Scholar]
  106. 106.
    Spagnolie SE, Lauga E. 2012. J. Fluid. Mech. 700:143
    [Google Scholar]
  107. 107.
    Smith DJ, Gaffney EA, Blake JR, Kirkman-Brown JC. 2009. J. Fluid Mech. 621:289320
    [Google Scholar]
  108. 108.
    Mousavi SM, Gompper G, Winkler RG. 2020. Soft Matter 16:486675
    [Google Scholar]
  109. 109.
    Mathijssen AJ, Figueroa-Morales N, Junot G, Clément E, Lindner A, Zöttl A. 2019. Nat. Commun. 10:112
    [Google Scholar]
  110. 110.
    Chen H, Thiffeault JL. 2021. J. Fluid Mech. 916:A15
    [Google Scholar]
  111. 111.
    Zhu L, Lauga E, Brandt L. 2013. J. Fluid Mech. 726:285311
    [Google Scholar]
  112. 112.
    Jana S, Um SH, Jung S 2012. Phys. Fluids 24:041901
    [Google Scholar]
  113. 113.
    Chrispell JC, Fauci LJ, Shelley M. 2013. Phys. Fluids 25:e1002167
    [Google Scholar]
  114. 114.
    Berg HC, Turner L. 1990. Biophys. J. 58:919930
    [Google Scholar]
  115. 115.
    Frymier PD, Ford RM, Berg HC, Cummings PT. 1995. PNAS 92:619599
    [Google Scholar]
  116. 116.
    Lauga E, DiLuzio WR, Whitesides GM, Stone HA. 2006. Biophys. J. 90:40012
    [Google Scholar]
  117. 117.
    Lushi E, Kantsler V, Goldstein RE. 2017. Phys. Rev. E 96:023102
    [Google Scholar]
  118. 118.
    Turner L, Ryu WS, Berg HC. 2000. J. Bacteriol. 182:2793801
    [Google Scholar]
  119. 119.
    Molaei M, Barry M, Stocker R, Sheng J. 2014. Phys. Rev. Lett. 113:068103
    [Google Scholar]
  120. 120.
    Buchner AJ, Muller K, Mehmood J, Tam D. 2021. PNAS 118:20e2102095118
    [Google Scholar]
  121. 121.
    Llopis I, Pagonabarraga I. 2010. J. Non-Newtonian Fluid Mech. 165:94652
    [Google Scholar]
  122. 122.
    Goto T, Nakata K, Baba K, Nishimura M, Magariyama Y. 2005. Biophys. J. 89:377179
    [Google Scholar]
  123. 123.
    Giacché D, Ishikawa T, Yamaguchi T 2010. Phys. Rev. E 82:056309
    [Google Scholar]
  124. 124.
    Shum H, Gaffney EA, Smith DJ. 2010. Proc. Roy. Soc. A 466:172548
    [Google Scholar]
  125. 125.
    Elgeti J, Kaupp UB, Gompper G. 2010. Biophys. J. 99:101826
    [Google Scholar]
  126. 126.
    Hill J, Kalkanci O, McMurry JL, Koser H. 2007. Phys. Rev. Lett. 98:068101
    [Google Scholar]
  127. 127.
    Ishimoto K, Crowdy DG. 2017. J. Fluid Mech. 821:64767
    [Google Scholar]
  128. 128.
    Figueroa-Morales N, Mino GL, Rivera A, Caballero R, Clément E et al. 2015. Soft Matter 11:31628493
    [Google Scholar]
  129. 129.
    Li G, Tang JX. 2009. Phys. Rev. Lett. 103:078101
    [Google Scholar]
  130. 130.
    Schaar K, Zöttl A, Stark H. 2015. Phys. Rev. Lett. 115:038101
    [Google Scholar]
  131. 131.
    Tokárová V, Perumal AS, Nayak M, Shum H, Kašpar O et al. 2021. PNAS 118:17e2013925118
    [Google Scholar]
  132. 132.
    Crowdy DG, Or Y. 2010. Phys. Rev. E 81:036313
    [Google Scholar]
  133. 133.
    Or Y, Zhang S, Murray RM. 2011. SIAM J. Appl. Dyn. Sys. 10:101341
    [Google Scholar]
  134. 134.
    Zöttl A, Stark H. 2012. Phys. Rev. Lett. 108:218104
    [Google Scholar]
  135. 135.
    Spagnolie SE, Wahl C, Lukasik J, Thiffeault JL. 2017. Physica D 341:3344
    [Google Scholar]
  136. 136.
    Liu B, Breuer KS, Powers TR. 2014. Phys. Fluids 26:011701
    [Google Scholar]
  137. 137.
    LaGrone J, Cortez R, Fauci L 2019. Phys. Rev. Fluids 4:033102
    [Google Scholar]
  138. 138.
    Lebois F, Sauvage P, Py C, Cardoso O, Ladoux B et al. 2012. Biophys. J. 102:279198
    [Google Scholar]
  139. 139.
    Takagi D, Palacci J, Braunschweig AB, Shelley MJ, Zhang J. 2014. Soft Matter 10:178489
    [Google Scholar]
  140. 140.
    Sipos O, Nagy K, Di Leonardo R, Galajda P. 2015. Phys. Rev. Lett. 114:258104
    [Google Scholar]
  141. 141.
    Spagnolie SE, Moreno-Flores GR, Bartolo D, Lauga E. 2015. Soft Matter 11:3396411
    [Google Scholar]
  142. 142.
    Makarchuk S, Braz VC, Araújo NA, Ciric L, Volpe G. 2019. Nat. Commun. 10:112
    [Google Scholar]
  143. 143.
    Wykes MSD, Zhong X, Tong J, Adachi T, Liu Y et al. 2017. Soft Matter 13:468188
    [Google Scholar]
  144. 144.
    Mathijssen AJTM, Jeanneret R, Polin M. 2018. Phys. Rev. Fluids 3:033103
    [Google Scholar]
  145. 145.
    Alonso-Matilla R, Chakrabarti B, Saintillan D. 2019. Phys. Rev. Fluids 4:043101
    [Google Scholar]
  146. 146.
    Brown AT, Vladescu ID, Dawson A, Vissers T, Schwarz-Linek J et al. 2016. Soft Matter 12:13140
    [Google Scholar]
  147. 147.
    Bhattacharjee T, Datta SS. 2019. Nat. Commun. 10:19
    [Google Scholar]
  148. 148.
    Park S, Hwang H, Nam SW, Martinez F, Austin RH, Ryu WS. 2008. PLOS ONE 3:e2550
    [Google Scholar]
  149. 149.
    Wysocki A, Elgeti J, Gompper G. 2015. Phys. Rev. E 91:050302
    [Google Scholar]
  150. 150.
    Contino M, Lushi E, Tuval I, Kantsler V, Polin M. 2015. Phys. Rev. Lett. 115:258102
    [Google Scholar]
  151. 151.
    Mozaffari A, Sharifi-Mood N, Koplik J, Maldarelli C. 2016. Phys. Fluids 28:053107
    [Google Scholar]
  152. 152.
    Lintuvuori JS, Brown AT, Stratford K, Marenduzzo D. 2016. Soft Matter 12:795968
    [Google Scholar]
  153. 153.
    Galajda P, Keymer J, Chaikin P, Austin R 2007. J. Bacteriol. 189:87047
    [Google Scholar]
  154. 154.
    Mueller P, Thiffeault JL. 2017. Phys. Rev. Fluids 2:013103
    [Google Scholar]
  155. 155.
    Lin Z, Thiffeault JL, Childress S. 2011. J. Fluid Mech. 669:16777
    [Google Scholar]
  156. 156.
    Shum H, Yeomans JM. 2017. Phys. Rev. Fluids 2:113101
    [Google Scholar]
  157. 157.
    Kamdar S, Shin S, Leishangthem P, Francis LF, Xu X, Cheng X. 2022. Nature 603:790381923
    [Google Scholar]
  158. 158.
    Majmudar T, Keaveny EE, Zhang J, Shelley MJ. 2012. J. Roy. Soc. Interface 9:73180923
    [Google Scholar]
  159. 159.
    Conrad JC. 2020. J. Ind. Microbiol. Biotechnol. 47:72538
    [Google Scholar]
  160. 160.
    Mathijssen AJ, Doostmohammadi A, Yeomans JM, Shendruk TN. 2016. J. Fluid Mech. 806:3570
    [Google Scholar]
  161. 161.
    Morse M, Huang A, Li G, Maxey MR, Tang JX. 2013. Biophys. J. 105:2128
    [Google Scholar]
  162. 162.
    Lopez D, Lauga E. 2014. Phys. Fluids 26:40012
    [Google Scholar]
  163. 163.
    Deng J, Molaei M, Chisholm NG, Stebe KJ. 2020. Langmuir 36:6888902
    [Google Scholar]
  164. 164.
    Sprenger AR, Shaik VA, Ardekani AM, Lisicki M, Mathijssen AJTM et al. 2020. Euro. Phys. J. E 43:118
    [Google Scholar]
  165. 165.
    Crowdy D, Lee S, Samson O, Lauga E, Hosoi AE. 2011. J. Fluid Mech. 681:2447
    [Google Scholar]
  166. 166.
    Dias MA, Powers TR. 2013. Phys. Fluids 25:101901
    [Google Scholar]
  167. 167.
    Ledesma-Aguilar R, Yeomans JM 2013. Phys. Rev. Lett. 111:138101
    [Google Scholar]
  168. 168.
    Lemelle L, Palierne JF, Chatre E, Place C 2010. J. Bacteriol. 192:63078
    [Google Scholar]
  169. 169.
    Bianchi S, Saglimbeni F, Frangipane G, Dell'Arciprete D, Di Leonardo R. 2019. Soft Matter 15:3397406
    [Google Scholar]
  170. 170.
    Di Leonardo R, Dell'Arciprete D, Angelani L, Iebba V. 2011. Phys. Rev. Lett. 106:038101
    [Google Scholar]
  171. 171.
    Pimponi D, Chinappi M, Gualtieri P, Casciola CM. 2016. J. Fluid Mech. 789:51433
    [Google Scholar]
  172. 172.
    Desai N, Shaik VA, Ardekani AM. 2018. Soft Matter 14:26478
    [Google Scholar]
  173. 173.
    Shaik VA, Ardekani AM. 2019. Phys. Rev. E 99:033101
    [Google Scholar]
  174. 174.
    Ahmadzadegan A, Wang S, Vlachos PP, Ardekani AM. 2019. Phys. Rev. E 100:062605
    [Google Scholar]
  175. 175.
    Trouilloud R, Yu T, Hosoi A, Lauga E. 2008. Phys. Rev. Lett. 101:048102
    [Google Scholar]
  176. 176.
    Shaik VA, Ardekani AM. 2017. J. Fluid Mech. 824:4273
    [Google Scholar]
  177. 177.
    Wu H, Thiébaud M, Hu WF, Farutin A, Rafai S et al. 2015. Phys. Rev. E 92:050701
    [Google Scholar]
  178. 178.
    Dalal S, Farutin A, Misbah C. 2020. Soft Matter 16:1599613
    [Google Scholar]
  179. 179.
    Woolley DM, Crockett RF, Groom WD, Revell SG. 2009. J. Exp. Biol. 212:221523
    [Google Scholar]
  180. 180.
    Yuan J, Raizen DM, Bau H. 2014. PNAS 111:686570
    [Google Scholar]
  181. 181.
    Dombrowski C, Cisneros L, Chatkaew S, Goldstein RE, Kessler JO. 2004. Phys. Rev. Lett. 93:098103
    [Google Scholar]
  182. 182.
    Hernandez-Ortiz JP, Stoltz CG, Graham MD. 2005. Phys. Rev. Lett. 95:204501
    [Google Scholar]
  183. 183.
    Saintillan D, Shelley MJ. 2007. Phys. Rev. Lett. 99:058102
    [Google Scholar]
  184. 184.
    Evans AA, Ishikawa T, Yamaguchi T, Lauga E. 2011. Phys. Fluids 23:111702
    [Google Scholar]
  185. 185.
    Schoeller SF, Keaveny EE. 2018. J. Roy. Soc. Interface 15:20170834
    [Google Scholar]
  186. 186.
    Saintillan D, Shelley MJ. 2013. C. R. Phys. 14:497517
    [Google Scholar]
  187. 187.
    Miles CJ, Evans AA, Shelley MJ, Spagnolie SE. 2019. Phys. Rev. Lett. 122:098002
    [Google Scholar]
  188. 188.
    Ramaswamy S. 2010. Annu. Rev. Condens. Matter Phys. 1:32345
    [Google Scholar]
  189. 189.
    Koch DL, Subramanian G. 2011. Annu. Rev. Fluid Mech. 43:63759
    [Google Scholar]
  190. 190.
    Vicsek T, Zafeiris A. 2012. Phys. Rep. 517:71140
    [Google Scholar]
  191. 191.
    Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J et al. 2013. Rev. Mod. Phys. 85:1143
    [Google Scholar]
  192. 192.
    Saintillan D, Shelley MJ. 2015. See Reference 7 31955
  193. 193.
    Alert R, Casademunt J, Joanny JF. 2022. Annu. Rev. Condens. Matter Phys. 13:14370
    [Google Scholar]
  194. 194.
    Gachelin J, Rousselet A, Lindner A, Clement E 2014. New J. Phys. 16:025003
    [Google Scholar]
  195. 195.
    Patteson A, Gopinath A, Purohit PK, Arratia PE. 2016. Soft Matter 12:8236572
    [Google Scholar]
  196. 196.
    Peng Y, Lai L, Tai YS, Zhang K, Xu X, Cheng X. 2016. Phys. Rev. Lett. 116:6068303
    [Google Scholar]
  197. 197.
    Soni V, Bililign ES, Magkiriadou S, Sacanna S, Bartolo D et al. 2019. Nat. Phys. 15:11118894
    [Google Scholar]
  198. 198.
    Han K, Kokot G, Tovkach O, Glatz A, Aranson IS, Snezhko A. 2020. PNAS 117:18970611
    [Google Scholar]
  199. 199.
    Shankar S, Souslov A, Bowick MJ, Marchetti MC, Vitelli V. 2022. Nat. Rev. Phys. 4:638098
    [Google Scholar]
  200. 200.
    Petroff AP, Wu X-L, Libchaber A. 2015. Phys. Rev. Lett. 114:15158102
    [Google Scholar]
  201. 201.
    Tan TH, Mietke A, Li J, Chen Y, Higinbotham H et al. 2022. Nature 607:28793
    [Google Scholar]
  202. 202.
    Underhill PT, Hernandez-Ortiz JP, Graham MD. 2008. Phys. Rev. Lett. 100:248101
    [Google Scholar]
  203. 203.
    Ishikawa T, Locsei J, Pedley T. 2008. J. Fluid Mech. 615:40131
    [Google Scholar]
  204. 204.
    Underhill PT, Graham MD. 2011. Phys. Fluids 23:121902
    [Google Scholar]
  205. 205.
    Saintillan D, Shelley MJ. 2012. J. Roy. Soc. Interface 9:57185
    [Google Scholar]
  206. 206.
    Bárdfalvy D, Nordanger H, Nardini C, Morozov A, Stenhammar J. 2019. Soft Matter 15:774756
    [Google Scholar]
  207. 207.
    Kasyap T, Koch DL, Wu M. 2014. Phys. Fluids 26:8081901
    [Google Scholar]
  208. 208.
    Morozov A, Marenduzzo D. 2014. Soft Matter 10:16274858
    [Google Scholar]
  209. 209.
    Stenhammar J, Nardini C, Nash RW, Marenduzzo D, Morozov A. 2017. Phys. Rev. Lett. 119:028005
    [Google Scholar]
  210. 210.
    Brotto T, Bartolo D, Saintillan D. 2015. J. Nonlinear Sci. 25:112539
    [Google Scholar]
  211. 211.
    Schoeller SF, Holt WV, Keaveny EE. 2020. Philos. Trans. Roy. Soc. B 375:20190384
    [Google Scholar]
  212. 212.
    Simha RA, Ramaswamy S. 2002. Phys. Rev. Lett. 89:058101
    [Google Scholar]
  213. 213.
    Qian Y, Kramer PR, Underhill PT. 2017. Phys. Rev. Fluids 2:043104
    [Google Scholar]
  214. 214.
    Škultéty V, Nardini C, Stenhammar J, Marenduzzo D, Morozov A. 2020. Phys. Rev. X 10:031059
    [Google Scholar]
  215. 215.
    Rafaï S, Jibuti L, Peyla P. 2010. Phys. Rev. Lett. 104:098102
    [Google Scholar]
  216. 216.
    Mussler M, Rafaï S, Peyla P, Wagner C. 2013. Europhys. Lett. 101:54004
    [Google Scholar]
  217. 217.
    Gachelin J, Mino G, Berthet H, Lindner A, Rousselet A, Clément É. 2013. Phys. Rev. Lett. 110:268103
    [Google Scholar]
  218. 218.
    López HM, Gachelin J, Douarche C, Auradou H, Clément E. 2015. Phys. Rev. Lett. 115:028301
    [Google Scholar]
  219. 219.
    McDonnell AG, Gopesh TC, Lo J, O'Bryan M, Yeo LY et al. 2015. Soft Matter 11:465868
    [Google Scholar]
  220. 220.
    Saintillan D. 2010. Phys. Rev. E 81:5056307
    [Google Scholar]
  221. 221.
    Guo S, Samanta D, Peng Y, Xu X, Cheng X. 2018. PNAS 115:28721217
    [Google Scholar]
  222. 222.
    Takatori S, Brady J. 2017. Phys. Rev. Lett. 118:018003
    [Google Scholar]
  223. 223.
    Ishikawa T, Brumley DR, Pedley TJ. 2021. J. Fluid Mech. 914:A26
    [Google Scholar]
  224. 224.
    Matsui H, Omori T, Ishikawa T. 2020. Phys. Fluids 32:071902
    [Google Scholar]
  225. 225.
    Bozorgi Y, Underhill PT. 2014. Rheol. Acta 53:12899909
    [Google Scholar]
  226. 226.
    Bechtel TM, Khair AS. 2017. Rheol. Acta 56:14960
    [Google Scholar]
  227. 227.
    Cates M, Fielding S, Marenduzzo D, Orlandini E, Yeomans J. 2008. Phys. Rev. Lett. 101:068102
    [Google Scholar]
  228. 228.
    Giomi L, Liverpool TB, Marchetti MC. 2010. Phys. Rev. E 81:051908
    [Google Scholar]
  229. 229.
    Liu Z, Zhang K, Cheng X. 2019. Rheol. Acta 58:843951
    [Google Scholar]
  230. 230.
    Hochbaum AI, Aizenberg J. 2010. Nano Lett. 10:371721
    [Google Scholar]
  231. 231.
    Elfring GJ, Pak OS, Lauga E 2010. J. Fluid Mech. 646:50515
    [Google Scholar]
  232. 232.
    Tung CK, Lin C, Harvey B, Fiore AG, Ardon F et al. 2017. Sci. Rep. 7:19
    [Google Scholar]
  233. 233.
    Sokolov A, Zhou S, Lavrentovich OD, Aranson IS. 2015. Phys. Rev. E 91:013009
    [Google Scholar]
  234. 234.
    Zhou S, Tovkach O, Golovaty D, Sokolov A, Aranson IS, Lavrentovich OD. 2017. New J. Phys. 19:055006
    [Google Scholar]
  235. 235.
    Liu S, Shankar S, Marchetti MC, Wu Y. 2021. Nature 590:8084
    [Google Scholar]
  236. 236.
    Bozorgi Y, Underhill PT. 2014. J. Non-Newtonian Fluid Mech. 214:6977
    [Google Scholar]
  237. 237.
    Li G, Ardekani AM. 2016. Phys. Rev. Lett. 117:118001
    [Google Scholar]
  238. 238.
    Bozorgi Y, Underhill PT. 2011. Phys. Rev. E 84:061901
    [Google Scholar]
  239. 239.
    Bozorgi Y, Underhill PT. 2013. J. Rheol. 57:511
    [Google Scholar]
  240. 240.
    Caldara M, Friedlander RS, Kavanaugh NL, Aizenberg J, Foster KR, Ribbeck K. 2012. Curr. Biol. 22:232530
    [Google Scholar]
  241. 241.
    Wagner CE, Wheeler KM, Ribbeck K. 2018. Annu. Rev. Cell Dev. Biol. 34:189215
    [Google Scholar]
  242. 242.
    Lushi E, Wioland H, Goldstein RE. 2014. PNAS 111:973338
    [Google Scholar]
  243. 243.
    Wioland H, Woodhouse FG, Dunkel J, Goldstein RE. 2016. Nat. Phys. 12:34145
    [Google Scholar]
  244. 244.
    Wioland H, Lushi E, Goldstein RE. 2016. New J. Phys. 18:075002
    [Google Scholar]
  245. 245.
    Theillard M, Saintillan D. 2019. J. Comput. Phys. 397:108841
    [Google Scholar]
  246. 246.
    Riedel IH, Kruse K, Howard J. 2005. Science 309:3003
    [Google Scholar]
  247. 247.
    Angelani L, Maggi C, Bernardini ML, Rizzo A, Di Leonardo R. 2011. Phys. Rev. Lett. 107:138302
    [Google Scholar]
  248. 248.
    Singh J, Patteson AE, Maldonado BOT, Purohit PK, Arratia PE. 2021. Soft Matter 17:415160
    [Google Scholar]
  249. 249.
    Reinken H, Nishiguchi D, Heidenreich S, Sokolov A, Bär M et al. 2020. Commun. Phys. 3:19
    [Google Scholar]
  250. 250.
    Theillard M, Alonso-Matilla R, Saintillan D. 2017. Soft Matter 13:36375
    [Google Scholar]
  251. 251.
    Zöttl A, Stark H. 2014. Phys. Rev. Lett. 112:118101
    [Google Scholar]
  252. 252.
    Hernandez-Ortiz JP, Underhill PT, Graham MD. 2009. J. Phys. Cond. Matt. 21:204107
    [Google Scholar]
  253. 253.
    Driscoll M, Delmotte B, Youssef M, Sacanna S, Donev A, Chaikin P. 2017. Nat. Phys. 13:37579
    [Google Scholar]
  254. 254.
    van Zuiden BC, Paulose J, Irvine WTM, Bartolo D, Vitelli V. 2016. PNAS 113:461291924
    [Google Scholar]
  255. 255.
    Dasbiswas K, Mandadapu KK, Vaikuntanathan S. 2018. PNAS 115:39E903140
    [Google Scholar]
  256. 256.
    Yang X, Ren C, Cheng K, Zhang HP. 2020. Phys. Rev. E 101:2022603
    [Google Scholar]
  257. 257.
    Liu P, Zhu H, Zeng Y, Du G, Ning L et al. 2020. PNAS 117:22119017
    [Google Scholar]
  258. 258.
    Zhang B, Hilton B, Short C, Souslov A, Snezhko A. 2020. Phys. Rev. Res. 2:4043225
    [Google Scholar]
  259. 259.
    Vaccari L, Molaei M, Niepa TH, Lee D, Leheny RL, Stebe KJ. 2017. Adv. Colloid Interface Sci. 247:56172
    [Google Scholar]
  260. 260.
    Dorobantu LS, Yeung AK, Foght JM, Gray MR. 2004. Appl. Env. Microbiol. 70:633336
    [Google Scholar]
  261. 261.
    Rivas DP, Hedgecock ND, Stebe KJ, Leheny RL. 2021. Soft Matter 17:8195210
    [Google Scholar]
  262. 262.
    Mazza MG. 2016. J. Phys. D Appl. Phys. 49:20203001
    [Google Scholar]
  263. 263.
    Costerton JW, Stewart PS, Greenberg EP. 1999. Science 284:131822
    [Google Scholar]
  264. 264.
    Sanchez T, Chen DTN, DeCamp SJ, Heymann M, Dogic Z. 2012. Nature 491:43134
    [Google Scholar]
  265. 265.
    Tjhung E, Marenduzzo D, Cates ME. 2012. PNAS 109:1238186
    [Google Scholar]
  266. 266.
    Gao T, Li Z. 2017. Phys. Rev. Lett. 119:108002
    [Google Scholar]
  267. 267.
    Young YN, Shelley MJ, Stein DB. 2021. Math. Biosci. Eng. 18:284981
    [Google Scholar]
  268. 268.
    Krüger C, Klös G, Bahr C, Maass CC. 2016. Phys. Rev. Lett. 117:048003
    [Google Scholar]
  269. 269.
    Whitfield CA, Hawkins RJ. 2016. New J. Phys. 18:123016
    [Google Scholar]
  270. 270.
    Maass CC, Krüger C, Herminghaus S, Bahr C. 2016. Annu. Rev. Condens. Matter Phys. 7:17193
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-040821-112149
Loading
/content/journals/10.1146/annurev-conmatphys-040821-112149
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error