1932

Abstract

Active colloids are self-propelled particles moving in viscous fluids by consuming fuel from their surroundings. Here, we review the numerical and theoretical modeling of active colloids propelled by self-generated near-surface flows. We start with the generic model of an active Brownian particle taking into account potential forces and effective pairwise interaction, which include hydrodynamic and phoretic interactions. Also, the squirmer as a model microswimmer is introduced. We then discuss the explicit modeling of self-generated fluid flow and the full hydrodynamic-chemical coupling. Finally, we discuss recent advances in selected topics in which modeling of active colloids is used to study motion in crowded and complex environments, microrheology in active baths, active colloidal engines, adaptive responses of active colloids with the help of machine learning techniques, as well as effects of colloid and fluid inertia.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-040821-115500
2023-03-10
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/14/1/annurev-conmatphys-040821-115500.html?itemId=/content/journals/10.1146/annurev-conmatphys-040821-115500&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Zöttl A, Stark H. 2016. J. Phys. Condens. Matter 28:253001
    [Google Scholar]
  2. 2.
    Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G, Volpe G. 2016. Rev. Mod. Phys. 88:045006
    [Google Scholar]
  3. 3.
    Mallory SA, Valeriani C, Cacciuto A. 2018. Annu. Rev. Phys. Chem. 69:59–79
    [Google Scholar]
  4. 4.
    Lauga E, Powers TR. 2009. Rep. Prog. Phys. 72:096601
    [Google Scholar]
  5. 5.
    Narayan V, Ramaswamy S, Menon N. 2007. Science 317:105–8
    [Google Scholar]
  6. 6.
    Anderson JL. 1989. Annu. Rev. Fluid Mech. 21:61–99
    [Google Scholar]
  7. 7.
    Moran JL, Posner JD. 2017. Annu. Rev. Fluid Mech. 49:511–40
    [Google Scholar]
  8. 8.
    Illien P, Golestanian R, Sen A. 2017. Chem. Soc. Rev. 46:5508–18
    [Google Scholar]
  9. 9.
    Soto R, Golestanian R. 2014. Phys. Rev. Lett. 112:068301
    [Google Scholar]
  10. 10.
    Michelin S, Lauga E, Bartolo D. 2013. Phys. Fluids 25:061701
    [Google Scholar]
  11. 11.
    Golestanian R, Liverpool TB, Ajdari A. 2007. New J. Phys. 9:126
    [Google Scholar]
  12. 12.
    Jiang HR, Yoshinaga N, Sano M. 2010. Phys. Rev. Lett. 105:268302
    [Google Scholar]
  13. 13.
    Bickel T, Majee A, Würger A. 2013. Phys. Rev. E 88:012301
    [Google Scholar]
  14. 14.
    Kroy K, Chakraborty D, Cichos F. 2016. Eur. Phys. J. Spec. Top. 225:2207–25
    [Google Scholar]
  15. 15.
    Lozano C, ten Hagen B, Löwen H, Bechinger C. 2016. Nat. Commun. 7:12828
    [Google Scholar]
  16. 16.
    Stone H, Samuel A. 1996. Phys. Rev. Lett. 77:4102–4
    [Google Scholar]
  17. 17.
    Spagnolie SE, Lauga E. 2012. J. Fluid. Mech. 700:105–47
    [Google Scholar]
  18. 18.
    Campbell AI, Ebbens SJ, Illien P, Golestanian R. 2019. Nat. Commun. 10:3952
    [Google Scholar]
  19. 19.
    Ishikawa T, Simmonds MP, Pedley TJ. 2006. J. Fluid Mech. 568:119–60
    [Google Scholar]
  20. 20.
    Yoshinaga N, Liverpool TB. 2017. Phys. Rev. E 96:020603(R)
    [Google Scholar]
  21. 21.
    Golestanian R. 2012. Phys. Rev. Lett. 108:038303
    [Google Scholar]
  22. 22.
    Pohl O, Stark H. 2015. Eur. Phys. J. E 38:893
    [Google Scholar]
  23. 23.
    Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J et al. 2013. Rev. Mod. Phys. 85:1143–89
    [Google Scholar]
  24. 24.
    Sharifi-Mood N, Mozaffari A, Córdova-Figueroa UM. 2016. J. Fluid Mech. 798:910–54
    [Google Scholar]
  25. 25.
    Varma A, Michelin S. 2019. Phys. Rev. Fluids 4:124204 https://doi.org/10.1103/PhysRevFluids.4.124204
    [Crossref] [Google Scholar]
  26. 26.
    Redner GS, Baskaran A, Hagan MF. 2013. Phys. Rev. E 88:012305
    [Google Scholar]
  27. 27.
    Buttinoni I, Bialké J, Kümmel F, Löwen H, Bechinger C, Speck T. 2013. Phys. Rev. Lett. 110:238301
    [Google Scholar]
  28. 28.
    Digregorio P, Levis D, Suma A, Cugliandolo LF, Gonnella G, Pagonabarraga I. 2018. Phys. Rev. Lett. 121:098003
    [Google Scholar]
  29. 29.
    Cates ME, Tailleur J. 2015. Annu. Rev. Condens. Matter Phys. 6:219–44
    [Google Scholar]
  30. 30.
    Fily Y, Marchetti MC. 2012. Phys. Rev. Lett. 108:235702
    [Google Scholar]
  31. 31.
    Blaschke J, Maurer M, Menon K, Zöttl A, Stark H. 2016. Soft Matter 12:9821–31
    [Google Scholar]
  32. 32.
    Stenhammar J, Marenduzzo D, Allen RJ, Cates ME. 2014. Soft Matter 10:1489–99
    [Google Scholar]
  33. 33.
    Wysocki A, Winkler RG, Gompper G. 2014. Europhys. Lett. 105:48004
    [Google Scholar]
  34. 34.
    Suma A, Gonnella G, Marenduzzo D, Orlandini E. 2014. Europhys. Lett. 108:56004
    [Google Scholar]
  35. 35.
    Baskaran A, Marchetti MC. 2008. Phys. Rev. Lett. 101:268101
    [Google Scholar]
  36. 36.
    Wensink HH, Löwen H. 2012. J. Phys. Condens. Matter 24:464130
    [Google Scholar]
  37. 37.
    Bär M, Großmann R, Heidenreich S, Peruani F. 2020. Annu. Rev. Condens. Matter Phys. 11:441–66
    [Google Scholar]
  38. 38.
    van Teeffelen S, Löwen H. 2008. Phys. Rev. E 78:020101(R)
    [Google Scholar]
  39. 39.
    Kümmel F, ten Hagen B, Wittkowski R, Buttinoni I, Eichhorn R et al. 2013. Phys. Rev. Lett. 110:198302
    [Google Scholar]
  40. 40.
    Nguyen NHP, Klotsa D, Engel M, Glotzer SC. 2014. Phys. Rev. Lett. 112:075701
    [Google Scholar]
  41. 41.
    Yeo K, Lushi E, Vlahovska PM. 2015. Phys. Rev. Lett. 114:188301
    [Google Scholar]
  42. 42.
    Goto Y, Tanaka H. 2015. Nat. Commun. 6:5994
    [Google Scholar]
  43. 43.
    Theurkauff I, Cottin-Bizonne C, Palacci J, Ybert C, Bocquet L. 2012. Phys. Rev. Lett. 108:268303
    [Google Scholar]
  44. 44.
    Palacci J, Sacanna S, Vatchinsky A, Chaikin PM, Pine DJ. 2013. J. Am. Chem. Soc. 135:15978–81
    [Google Scholar]
  45. 45.
    Mognetti BM, Šarić A, Angioletti-Uberti S, Cacciuto A, Valeriani C, Frenkel D. 2013. Phys. Rev. Lett. 111:245702
    [Google Scholar]
  46. 46.
    Alarcón F, Valeriani C, Pagonabarraga I. 2017. Soft Matter 13:814–26
    [Google Scholar]
  47. 47.
    Pohl O, Stark H. 2014. Phys. Rev. Lett. 112:238303
    [Google Scholar]
  48. 48.
    Saha S, Golestanian R, Ramaswamy S. 2014. Phys. Rev. E 89:62316
    [Google Scholar]
  49. 49.
    Stürmer J, Seyrich M, Stark H. 2019. J. Chem. Phys. 150:214901
    [Google Scholar]
  50. 50.
    Hennes M, Wolff K, Stark H. 2014. Phys. Rev. Lett. 112:238104
    [Google Scholar]
  51. 51.
    Ishikawa T. 2009. J. R. Soc. Interface 6:815–34
    [Google Scholar]
  52. 52.
    Zöttl A, Stark H. 2014. Phys. Rev. Lett. 112:118101
    [Google Scholar]
  53. 53.
    Kyoya K, Matsunaga D, Imai Y, Omori T, Ishikawa T. 2015. Phys. Rev. E 92:63027
    [Google Scholar]
  54. 54.
    Lighthill JM. 1952. Commun. Pure Appl. Math. 5:109–18
    [Google Scholar]
  55. 55.
    Blake JR. 1971. Math. Proc. Camb. Philos. Soc. 70:303
    [Google Scholar]
  56. 56.
    Pak OS, Lauga E. 2014. J. Eng. Math. 88:1–28
    [Google Scholar]
  57. 57.
    Schmitt M, Stark H. 2016. Phys. Fluids 28:012106
    [Google Scholar]
  58. 58.
    Evans AA, Ishikawa T, Yamaguchi T, Lauga E. 2011. Phys. Fluids 23:111702
    [Google Scholar]
  59. 59.
    Delmotte B, Keaveny EE, Plouraboué F, Climent E. 2015. J. Comput. Phys. 302:524–47
    [Google Scholar]
  60. 60.
    Matas-Navarro R, Golestanian R, Liverpool TB, Fielding SM. 2014. Phys. Rev. E 90:032304
    [Google Scholar]
  61. 61.
    Li G, Ostace A, Ardekani AM. 2016. Phys. Rev. E 94:053104
    [Google Scholar]
  62. 62.
    Zöttl A. 2020. Chin. Phys. B 29:074701
    [Google Scholar]
  63. 63.
    Llopis I, Pagonabarraga I. 2010. J. Non-Newtonian Fluid Mech. 165:946–52
    [Google Scholar]
  64. 64.
    Kuron M, Stärk P, Burkard C, De Graaf J, Holm C. 2019. J. Chem. Phys. 150:144110
    [Google Scholar]
  65. 65.
    Downton MT, Stark H. 2009. J. Phys. Condens. Matter 21:204101
    [Google Scholar]
  66. 66.
    Götze IO, Gompper G. 2010. Phys. Rev. E 82:041921
    [Google Scholar]
  67. 67.
    Zöttl A, Stark H. 2012. Phys. Rev. Lett. 108:218104
    [Google Scholar]
  68. 68.
    Zantop AW, Stark H. 2021. J. Chem. Phys. 154:024105
    [Google Scholar]
  69. 69.
    Theers M, Westphal E, Qi K, Winkler RG, Gompper G. 2018. Soft Matter 14:8590–603
    [Google Scholar]
  70. 70.
    Kuhr JT, Rühle F, Stark H. 2019. Soft Matter 15:5685–94
    [Google Scholar]
  71. 71.
    Qi K, Westphal E, Gompper G, Winkler RG. 2022. Commun. Phys. 5:49
    [Google Scholar]
  72. 72.
    Kuhr JT, Blaschke J, Rühle F, Stark H. 2017. Soft Matter 13:7548–55
    [Google Scholar]
  73. 73.
    Rühle F, Stark H. 2020. Eur. Phys. J. E 43:26
    [Google Scholar]
  74. 74.
    Zantop AW, Stark H. 2021. J. Chem. Phys. 155:134904
    [Google Scholar]
  75. 75.
    Zantop A, Stark H 2022. Soft Matter 18:6179–91
    [Google Scholar]
  76. 76.
    Alarcón F, Pagonabarraga I. 2013. J. Mol. Liq. 185:56–61
    [Google Scholar]
  77. 77.
    Popescu MN, Uspal WE, Eskandari Z, Tasinkevych M, Dietrich S 2018. Eur. Phys. J. E 41:145
    [Google Scholar]
  78. 78.
    Varma A, Montenegro-Johnson TD, Michelin S 2018. Soft Matter 14:7155–73
    [Google Scholar]
  79. 79.
    Schmitt M, Stark H. 2013. Europhys. Lett. 101:44008
    [Google Scholar]
  80. 80.
    Uspal WE, Popescu MN, Dietrich S, Tasinkevych M. 2015. Soft Matter 11:434–38
    [Google Scholar]
  81. 81.
    Mozaffari A, Sharifi-Mood N, Koplik J, Maldarelli C. 2016. Phys. Fluids 28:053107
    [Google Scholar]
  82. 82.
    Popescu MN, Tasinkevych M, Dietrich S 2011. Europhys. Lett. 95:28004
    [Google Scholar]
  83. 83.
    Reigh SY, Kapral R. 2015. Soft Matter 11:3149–58
    [Google Scholar]
  84. 84.
    Liebchen B, Löwen H. 2019. J. Chem. Phys. 150:061102
    [Google Scholar]
  85. 85.
    Kanso E, Michelin S. 2019. J. Chem. Phys. 150:044902
    [Google Scholar]
  86. 86.
    Thakur S, Kapral R. 2012. Phys. Rev. E 85:026121
    [Google Scholar]
  87. 87.
    Huang MJ, Schofield J, Gaspard P, Kapral R. 2019. J. Chem. Phys. 150:12124110
    [Google Scholar]
  88. 88.
    Wagner M, Roca-Bonet S, Ripoll M 2021. Eur. Phys. J. E 44:343
    [Google Scholar]
  89. 89.
    Scagliarini A, Pagonabarraga I. 2020. Soft Matter 16:8893–903
    [Google Scholar]
  90. 90.
    Rojas-Pérez F, Delmotte B, Michelin S. 2021. J. Fluid Mech. 919:A22
    [Google Scholar]
  91. 91.
    Li G, Lauga E, Ardekani AM. 2021. J. Non-Newtonian Fluid Mech. 297:104655
    [Google Scholar]
  92. 92.
    Huang TY, Gu H, Nelson BJ. 2022. Annu. Rev. Control Robot. Auton. Syst. 5:279–310
    [Google Scholar]
  93. 93.
    Spagnolie SE, Moreno-Flores GR, Bartolo D, Lauga E. 2015. Soft Matter 11:3396–411
    [Google Scholar]
  94. 94.
    Chepizhko O, Peruani F. 2013. Phys. Rev. Lett. 111:160604
    [Google Scholar]
  95. 95.
    Zeitz M, Wolff K, Stark H. 2017. Eur. Phys. J. E 40:23
    [Google Scholar]
  96. 96.
    Morin A, Lopes Cardozo D, Chikkadi V, Bartolo D 2017. Phys. Rev. E 96:042611
    [Google Scholar]
  97. 97.
    Reichhardt CJ, Reichhardt C. 2017. Annu. Rev. Condens. Matter Phys. 8:51–75
    [Google Scholar]
  98. 98.
    Narinder N, Bechinger C, Gomez-Solano JR. 2018. Phys. Rev. Lett. 121:078003
    [Google Scholar]
  99. 99.
    Zhu L, Lauga E, Brandt L. 2012. Phys. Fluids 24:051902
    [Google Scholar]
  100. 100.
    Montenegro-Johnson TD, Smith DJ, Loghin D. 2013. Phys. Fluids 25:081903
    [Google Scholar]
  101. 101.
    Datt C, Zhu L, Elfring GJ, Pak OS. 2015. J. Fluid Mech. 784:R1
    [Google Scholar]
  102. 102.
    Lintuvuori JS, Würger A, Stratford K. 2017. Phys. Rev. Lett. 119:068001
    [Google Scholar]
  103. 103.
    Mandal S, Mazza MG. 2021. Eur. Phys. J. E 44:64
    [Google Scholar]
  104. 104.
    Choudhary A, Stark H. 2022. Soft Matter 18:48–52
    [Google Scholar]
  105. 105.
    Du Y, Jiang H, Hou Z. 2019. Soft Matter 15:2020–31
    [Google Scholar]
  106. 106.
    Zöttl A, Yeomans JM. 2019. J. Phys. Condens. Matter 31:234001
    [Google Scholar]
  107. 107.
    Zöttl A, Yeomans JM. 2019. Nat. Phys. 15:554–58
    [Google Scholar]
  108. 108.
    Qi K, Westphal E, Gompper G, Winkler RG. 2020. Phys. Rev. Lett. 124:068001
    [Google Scholar]
  109. 109.
    Qiao L, Huang MJ, Kapral R. 2020. Phys. Rev. Res. 2:033245
    [Google Scholar]
  110. 110.
    Zia RN. 2018. Annu. Rev. Fluid Mech. 50:371–405
    [Google Scholar]
  111. 111.
    Wu XL, Libchaber A. 2000. Phys. Rev. Lett. 84:3017–20
    [Google Scholar]
  112. 112.
    Leptos KC, Guasto JS, Gollub JP, Pesci AI, Goldstein RE. 2009. Phys. Rev. Lett. 103:198103
    [Google Scholar]
  113. 113.
    Maggi C, Paoluzzi M, Angelani L, Di Leonardo R. 2017. Sci. Rep. 7:17588
    [Google Scholar]
  114. 114.
    Knežević M, Stark H. 2020. New J. Phys. 22:113025
    [Google Scholar]
  115. 115.
    Granek O, Kafri Y, Tailleur J. 2022. Phys. Rev. Lett. 129:038001
    [Google Scholar]
  116. 116.
    Cengio SD, Levis D, Pagonabarraga I. 2019. Phys. Rev. Lett. 123:238003
    [Google Scholar]
  117. 117.
    Burkholder EW, Brady JF. 2020. Soft Matter 16:1034–46
    [Google Scholar]
  118. 118.
    Reichhardt C, Olson Reichhardt CJ 2015. Phys. Rev. E 91:032313
    [Google Scholar]
  119. 119.
    Chen DTN, Lau AWC, Hough LA, Islam MF, Goulian M et al. 2007. Phys. Rev. Lett. 99:148302
    [Google Scholar]
  120. 120.
    Knežević M, Avilés Podgurski LE, Stark H 2021. Sci. Rep. 11:22706
    [Google Scholar]
  121. 121.
    Fodor T, Cates ME. 2021. Europhys. Lett. 134:10003
    [Google Scholar]
  122. 122.
    Di Leonardo R, Angelani L, Dell'Arciprete D, Ruocco G, Schippa S et al. 2010. PNAS 107:9541–45
    [Google Scholar]
  123. 123.
    Sokolov A, Apodaca MM, Grzybowski BA, Aranson IS. 2010. PNAS 107:969–74
    [Google Scholar]
  124. 124.
    Angelani L, Di Leonardo R. 2010. New J. Phys. 12:113017
    [Google Scholar]
  125. 125.
    Kaiser A, Peshkov A, Sokolov A, ten Hagen B, Löwen H, Aranson IS. 2014. Phys. Rev. Lett. 112:158101
    [Google Scholar]
  126. 126.
    Krishnamurthy S, Ghosh S, Chatterji D, Ganapathyand R, Sood AK. 2016. Nat. Phys. 12:1134–39
    [Google Scholar]
  127. 127.
    Martin D, Nardini C, Cates M, Fodor É. 2018. Europhys. Lett. 121:60005
    [Google Scholar]
  128. 128.
    Malgaretti P, Nowakowski P, Stark H. 2021. Europhys. Lett. 134:20002
    [Google Scholar]
  129. 129.
    Malgaretti P, Stark H. 2022. Phys. Rev. Lett 129228005
    [Google Scholar]
  130. 130.
    Muiños-Landin S, Fischer A, Holubec V, Cichos F. 2021. Sci. Robot. 6:eabd9285
    [Google Scholar]
  131. 131.
    Colabrese S, Gustavsson K, Celani A, Biferale L. 2017. Phys. Rev. Lett. 118:158004
    [Google Scholar]
  132. 132.
    Yang Y, Bevan MA, Li B. 2020. Adv. Intel. Syst. 2:1900106
    [Google Scholar]
  133. 133.
    Hartl B, Hübl M, Kahl G, Zöttl A. 2021. PNAS 118:e2019683118
    [Google Scholar]
  134. 134.
    Alageshan JK, Verma AK, Bec J, Pandit R. 2020. Phys. Rev. E 101:043110
    [Google Scholar]
  135. 135.
    Gunnarson P, Mandralis I, Novati G, Koumoutsakos P, Dabiri JO. 2021. Nat. Commun. 12:7143
    [Google Scholar]
  136. 136.
    Nasiri M, Liebchen B. 2022. New J. Phys. 24:073042
    [Google Scholar]
  137. 137.
    Schneider E, Stark H. 2019. Europhys. Lett. 127:64003
    [Google Scholar]
  138. 138.
    Falk MJ, Alizadehyazdi V, Jaeger H, Murugan A. 2021. Phys. Rev. Res. 3:033291
    [Google Scholar]
  139. 139.
    Mirzakhanloo M, Esmaeilzadeh S, Alam MR. 2020. J. Fluid Mech. 903:A34
    [Google Scholar]
  140. 140.
    Tsang ACH, Tong PW, Nallan S, Pak OS. 2020. Phys. Rev. Fluids 5:074101
    [Google Scholar]
  141. 141.
    Zhu G, Fang WZ, Zhu L. 2022. J. Fluid. Mech. 944:A3
    [Google Scholar]
  142. 142.
    Löwen H. 2020. J. Chem. Phys. 152:040901
    [Google Scholar]
  143. 143.
    Scholz C, Jahanshahi S, Ldov A, Löwen H. 2018. Nat. Commun. 9:5156
    [Google Scholar]
  144. 144.
    Leoni M, Paoluzzi M, Eldeen S, Estrada A, Nguyen L et al. 2020. Phys. Rev. Res. 2:043299
    [Google Scholar]
  145. 145.
    Dai C, Bruss IR, Glotzer SC. 2020. Soft Matter 16:2847–53
    [Google Scholar]
  146. 146.
    Enculescu M, Stark H. 2011. Phys. Rev. Lett. 107:058301
    [Google Scholar]
  147. 147.
    Löwen H. 2019. Phys. Rev. E 99:062608
    [Google Scholar]
  148. 148.
    Chepizhko O, Franosch T. 2019. Soft Matter 15:452–61
    [Google Scholar]
  149. 149.
    Wang S, Ardekani A. 2012. Phys. Fluids 24:101902
    [Google Scholar]
  150. 150.
    Khair AS, Chisholm NG. 2014. Phys. Fluids 26:011902
    [Google Scholar]
  151. 151.
    Choudhary A, Paul S, Rühle F, Stark H. 2022. Commun. Phys. 5:14
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-040821-115500
Loading
/content/journals/10.1146/annurev-conmatphys-040821-115500
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error