1932

Abstract

Cytoskeletal networks are the main actuators of cellular mechanics, and a foundational example for active matter physics. In cytoskeletal networks, motion is generated on small scales by filaments that push and pull on each other via molecular-scale motors. These local actuations give rise to large-scale stresses and motion. To understand how microscopic processes can give rise to self-organized behavior on larger scales it is important to consider what mechanisms mediate long-ranged mechanical interactions in the systems. Two scenarios have been considered in the recent literature. The first scenario is systems that are relatively sparse, in which most of the large-scale momentum transfer is mediated by the solvent in which cytoskeletal filaments are suspended. The second scenario is systems in which filaments are coupled via cross-link molecules throughout. Here, we review the differences and commonalities between the physics of these two regimes. We also survey the literature for the numbers that allow us to place a material within either of these two classes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-052521-093943
2022-03-10
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/13/1/annurev-conmatphys-052521-093943.html?itemId=/content/journals/10.1146/annurev-conmatphys-052521-093943&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Howard J. 2001. Mechanics of Motor Proteins and the Cytoskeleton Sunderland, MA: Sinauer Assoc.
    [Google Scholar]
  2. 2. 
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2007. Molecular Biology of the Cell New York: Garland Sci, 5th ed..
    [Google Scholar]
  3. 3. 
    Foster PJ, Fürthauer S, Shelley MJ, Needleman DJ. 2019. Curr. Opin. Cell Biol. 56:109–14
    [Google Scholar]
  4. 4. 
    Kruse K, Joanny JF, Jülicher F, Prost J, Sekimoto K. 2005. Eur. Phys. J. E 16:15–16
    [Google Scholar]
  5. 5. 
    Fürthauer S, Strempel M, Grill S, Jülicher F. 2012. Eur. Phys. J. E 35:89
    [Google Scholar]
  6. 6. 
    Jülicher F, Grill SW, Salbreux G. 2018. Rep. Prog. Phys. 81:7076601
    [Google Scholar]
  7. 7. 
    Naganathan SR, Fürthauer S, Rodriguez J, Fievet BT, Jülicher F et al. 2018. eLife 7e37677
    [Google Scholar]
  8. 8. 
    Doi M, Edwards SF. 1988. The Theory of Polymer Dynamics 73 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  9. 9. 
    de Gennes PG, Prost J. 1995. The Physics of Liquid Crystals Oxford, UK: Clarendon Press. , 2nd ed..
    [Google Scholar]
  10. 10. 
    Liverpool TB, Marchetti MC. 2003. Phys. Rev. Lett. 90:13138102
    [Google Scholar]
  11. 11. 
    Aranson IS, Tsimring LS. 2005. Phys. Rev. E 71:5050901
    [Google Scholar]
  12. 12. 
    Gao T, Blackwell R, Glaser MA, Betterton MD, Shelley MJ. 2015. Phys. Rev. Lett. 114:4048101
    [Google Scholar]
  13. 13. 
    Broedersz CP, MacKintosh FC. 2014. Rev. Mod. Phys. 86:3995–1036
    [Google Scholar]
  14. 14. 
    Fürthauer S, Lemma B, Foster PJ, Ems-McClung SC, Yu CH et al. 2019. Nat. Phys. 15:121295–300
    [Google Scholar]
  15. 15. 
    Mitchison T. 1989. J. Cell Biol. 109:2637–52
    [Google Scholar]
  16. 16. 
    Yang G, Cameron LA, Maddox PS, Salmon ED, Danuser G. 2008. J. Cell Biol. 182:4631–39
    [Google Scholar]
  17. 17. 
    Dalton BA, Oriola D, Decker F, Jülicher F, Brugués J. 2021. bioRxiv 2021.01.15.426844. https://doi.org/10.1101/2021.01.15.426844
  18. 18. 
    Kruse K, Jülicher F. 2000. Phys. Rev. Lett. 85:81778–81
    [Google Scholar]
  19. 19. 
    Kruse K, Jülicher F. 2003. Phys. Rev. E 67:5051913
    [Google Scholar]
  20. 20. 
    Fürthauer S, Needleman DJ, Shelley MJ. 2021. N. J. Phys. 23:1013012
    [Google Scholar]
  21. 21. 
    Marchetti M, Joanny JF, Ramaswamy S, Liverpool TB, Prost J et al. 2013. Rev. Mod. Phys. 85:31143–89
    [Google Scholar]
  22. 22. 
    Saintillan D, Shelley MJ. 2013. C. R. Phys. 14:6497–517
    [Google Scholar]
  23. 23. 
    Maryshev I, Marenduzzo D, Goryachev AB, Morozov A. 2018. Phys. Rev. E 97:2022412
    [Google Scholar]
  24. 24. 
    Janson ME, Loughlin R, Loïodice I, Fu C, Brunner D et al. 2007. Cell 128:2357–68
    [Google Scholar]
  25. 25. 
    Head D, Briels W, Gompper G. 2014. Phys. Rev. E 89:032705
    [Google Scholar]
  26. 26. 
    Popov K, Komianos J, Papoian GA. 2016. PLOS Comput. Biol. 12:4e1004877
    [Google Scholar]
  27. 27. 
    Freedman SL, Banerjee S, Hocky GM, Dinner AR. 2017. Biophys. J. 113:2448–60
    [Google Scholar]
  28. 28. 
    Collinet C, Lecuit T. 2021. Nat. Rev. Mol. Cell Biol. 22:245–65
    [Google Scholar]
  29. 29. 
    Redemann S, Baumgart J, Lindow N, Shelley M, Nazockdast E et al. 2017. Nat. Commun. 8:15288
    [Google Scholar]
  30. 30. 
    Pollard TD. 2016. Cold Spring Harb. Perspect. Biol. 8:8a018226
    [Google Scholar]
  31. 31. 
    Alfaro-Aco R, Petry S 2015. J. Biol. Chem. 290:2817154–62
    [Google Scholar]
  32. 32. 
    Luby-Phelps K. 1999. Int. Rev. Cytol. 192:189–221
    [Google Scholar]
  33. 33. 
    Garzon-Coral C, Fantana HA, Howard J. 2016. Science 352:62891124–27
    [Google Scholar]
  34. 34. 
    Salbreux G, Charras G, Paluch E. 2012. Trends Cell Biol. 22:10536–45
    [Google Scholar]
  35. 35. 
    Mayer M, Depken M, Bois JS, Jülicher F, Grill SW. 2010. Nature 467:7315617–21
    [Google Scholar]
  36. 36. 
    Gross P, Kumar KV, Goehring NW, Bois JS, Hoege C et al. 2019. Nat. Phys. 15:3293–300
    [Google Scholar]
  37. 37. 
    Callan-Jones A, Ruprecht V, Wieser S, Heisenberg CP, Voituriez R 2016. Phys. Rev. Lett. 116:2028102
    [Google Scholar]
  38. 38. 
    Turlier H, Audoly B, Prost J, Joanny JF. 2014. Biophys. J. 106:1114–23
    [Google Scholar]
  39. 39. 
    Chugh P, Clark AG, Smith MB, Cassani DA, Dierkes K et al. 2017. Nat. Cell Biol. 19:6689–97
    [Google Scholar]
  40. 40. 
    Naganathan SR, Fürthauer S, Nishikawa M, Jülicher F, Grill SW 2014. eLife 3:e04165
    [Google Scholar]
  41. 41. 
    Li D, Shao L, Chen B-C, Zhang X, Zhang M et al. 2015. Science 349:6251aab3500
    [Google Scholar]
  42. 42. 
    Wu K-T, Hishamunda JB, Chen DTN, DeCamp SJ, Chang Y-W et al. 2017. Science 355:6331eaal1979
    [Google Scholar]
  43. 43. 
    Fritzsche M, Erlenkämper C, Moeendarbary E, Charras G, Kruse K. 2016. Sci. Adv. 2:4e1501337
    [Google Scholar]
  44. 44. 
    Wu JQ, Pollard TD. 2005. Science 310:5746310–14
    [Google Scholar]
  45. 45. 
    Brugués J, Nuzzo V, Mazur E, Needleman DJ. 2012. Cell 149:3554–64
    [Google Scholar]
  46. 46. 
    Brugués J, Needleman D. 2014. PNAS 111:5218496–500
    [Google Scholar]
  47. 47. 
    Petry S, Pugieux C, Nédélec FJ, Vale RD. 2011. PNAS 108:3514473–78
    [Google Scholar]
  48. 48. 
    Petry S, Groen AC, Ishihara K, Mitchison TJ, Vale RD. 2013. Cell 152:4768–77
    [Google Scholar]
  49. 49. 
    Oh D, Yu CH, Needleman DJ. 2016. PNAS 113:318729–34
    [Google Scholar]
  50. 50. 
    Kaye B, Stiehl O, Foster PJ, Shelley MJ, Needleman DJ, Fürthauer S. 2018. N. J. Phys. 20:5055012
    [Google Scholar]
  51. 51. 
    Decker F, Oriola D, Dalton B, Brugués J 2018. eLife 7:e31149
    [Google Scholar]
  52. 52. 
    Thawani A, Kadzik RS, Petry S. 2018. Nat. Cell Biol. 20:5575–85
    [Google Scholar]
  53. 53. 
    Thawani A, Stone HA, Shaevitz JW, Petry S 2019. eLife 8:e43890
    [Google Scholar]
  54. 54. 
    Redemann S, Fürthauer S, Shelley M, Müller-Reichert T. 2019. Curr. Opin. Struct. Biol. 58:269–77
    [Google Scholar]
  55. 55. 
    Redemann S, Lantzsch I, Lindow N, Prohaska S, Srayko M, Müller-Reichert T. 2018. Curr. Biol. 28:182991–97
    [Google Scholar]
  56. 56. 
    Lantzsch I, Yu CH, Yazdhkasti H, Lindow N, Szentgyoergyi E et al. 2021. 10e58903
  57. 57. 
    Pavin N, Laan L, Ma R, Dogterom M, Jülicher F. 2012. N. J. Phys. 14:10105025
    [Google Scholar]
  58. 58. 
    Nazockdast E, Rahimian A, Needleman D, Shelley M. 2017. Mol. Biol. Cell 28:233261–70
    [Google Scholar]
  59. 59. 
    Farhadifar R, Yu CH, Fabig G, Wu HY, Stein DB et al. 2020. eLife 9:e55877
    [Google Scholar]
  60. 60. 
    Sulerud T, Sami AB, Li G, Kloxin A, Oakey J, Gatlin J. 2020. Mol. Biol. Cell 31:252791–802
    [Google Scholar]
  61. 61. 
    Meaders JL, Burgess DR. 2020. Cells 9:2505
    [Google Scholar]
  62. 62. 
    Xie J, Minc N. 2020. Front. Cell Dev. Biol. 8:69
    [Google Scholar]
  63. 63. 
    Pelletier JF, Field CM, Fürthauer S, Sonnett M, Mitchison TJ 2020. eLife 9:e60047
    [Google Scholar]
  64. 64. 
    Sanchez T, Chen DT, DeCamp SJ, Heymann M, Dogic Z. 2012. Nature 491:7424431–34
    [Google Scholar]
  65. 65. 
    Keber F, Loiseau E, Sanchez T, DeCamp S, Giomi L et al. 2014. Science 345:1135–39
    [Google Scholar]
  66. 66. 
    Opathalage A, Norton MM, Juniper MP, Langeslay B, Aghvami SA et al. 2019. PNAS 116:114788–97
    [Google Scholar]
  67. 67. 
    Chandrakar P, Varghese M, Aghvami SA, Baskaran A, Dogic Z, Duclos G. 2020. Phys. Rev. Lett. 125:25257801
    [Google Scholar]
  68. 68. 
    Čopar S, Aplinc J, Kos Ž, Žumer S, Ravnik M. 2019. Phys. Rev. X 9:3031051
    [Google Scholar]
  69. 69. 
    Duclos G, Adkins R, Banerjee D, Peterson MS, Varghese M et al. 2020. Science 367:64821120–24
    [Google Scholar]
  70. 70. 
    Banerjee S, Gardel ML, Schwarz US. 2020. Annu. Rev. Condens. Matter Phys. 11:421–39
    [Google Scholar]
  71. 71. 
    Foster PJ, Fürthauer S, Shelley MJ, Needleman DJ 2015. eLife 4:e10837
    [Google Scholar]
  72. 72. 
    Foster PJ, Yan W, Fürthauer S, Shelley MJ, Needleman DJ. 2017. N. J. Phys. 19:12125011
    [Google Scholar]
  73. 73. 
    Needleman D, Dogic Z. 2017. Nat. Rev. Mater. 2:17048
    [Google Scholar]
  74. 74. 
    Chaikin PM, Lubensky TC. 1995. Principles of Condensed Matter Physics Cambridge UK: Cambridge Univ. Press
    [Google Scholar]
  75. 75. 
    Kruse K, Zumdieck A, Jülicher F. 2003. Europhys. Lett. 64:5716
    [Google Scholar]
  76. 76. 
    Liverpool TB, Marchetti MC. 2006. Phys. Rev. Lett. 97:26268101
    [Google Scholar]
  77. 77. 
    Belmonte JM, Leptin M, Nédélec F. 2017. Mol. Syst. Biol. 13:9941
    [Google Scholar]
  78. 78. 
    Ronceray P, Broedersz CP, Lenz M. 2016. PNAS 113:112827–32
    [Google Scholar]
  79. 79. 
    Lenz M, Thoresen T, Gardel ML, Dinner AR. 2012. Phys. Rev. Lett. 108:23238107
    [Google Scholar]
  80. 80. 
    Lenz M. 2014. Phys. Rev. X 4:041002
    [Google Scholar]
  81. 81. 
    Saintillan D, Shelley MJ. 2008. Phys. Rev. Lett. 100:17178103
    [Google Scholar]
  82. 82. 
    Saintillan D, Shelley MJ. 2008. Phys. Fluids 20:12123304
    [Google Scholar]
  83. 83. 
    Subramanian G, Koch DL. 2009. J. Fluid Mech. 632:359–400
    [Google Scholar]
  84. 84. 
    Baskaran A, Marchetti MC. 2009. PNAS 106:3715567–72
    [Google Scholar]
  85. 85. 
    Batchelor G. 1970. J. Fluid Mech. 44:419–40
    [Google Scholar]
  86. 86. 
    Simha RA, Ramaswamy S. 2002. Phys. Rev. Lett. 89:5058101
    [Google Scholar]
  87. 87. 
    Ezhilan B, Shelley MJ, Saintillan D. 2013. Phys. Fluids 25:7070607
    [Google Scholar]
  88. 88. 
    Hohenegger C, Shelley MJ. 2010. Phys. Rev. E 81:046311
    [Google Scholar]
  89. 89. 
    Gao T, Blackwell R, Glaser MA, Betterton MD, Shelley MJ. 2015. Phys. Rev. E 92:062709
    [Google Scholar]
  90. 90. 
    Keller JB, Rubinow SI. 1976. J. Fluid Mech. 75:4705–14
    [Google Scholar]
  91. 91. 
    Blackwell R, Sweezy-Schindler O, Baldwin C, Hough LE, Glaser MA, Betterton M. 2016. Soft Matter 12:102676–87
    [Google Scholar]
  92. 92. 
    Liverpool TB, Marchetti MC. 2005. Europhys. Lett. 69:5846–52
    [Google Scholar]
  93. 93. 
    Ahmadi A, Marchetti MC, Liverpool TB. 2006. Phys. Rev. E 74:6061913
    [Google Scholar]
  94. 94. 
    Liverpool TB, Marchetti MC. 2008. Cell Motility P Lentz 177–206 New York: Springer
    [Google Scholar]
  95. 95. 
    Yang G, Cameron L, Maddox P, Salmon E, Danuser G 2008. J. Cell Biol. 182:631–39
    [Google Scholar]
  96. 96. 
    Ennomani H, Letort G, Guérin C, Martiel JL, Cao W et al. 2016. Curr. Biol. 26:5616–26
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-052521-093943
Loading
/content/journals/10.1146/annurev-conmatphys-052521-093943
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error