1932

Abstract

The recent development of artificially fabricated van der Waals nanostructures makes it possible to design and control the symmetry of solids and to find novel physical properties and related functionalities. A characteristic physical property reflecting such symmetry breaking is the nonlinear response, which is typically studied as the second harmonic generation of light, although studies have recently expanded to include various transport phenomena. An important aspect of nonlinear transport for modern condensed matter physics is that it is not only a unique functionality of noncentrosymmetric systems but also an emergent property reflecting underlying physics such as spin–orbit interaction, superconductivity, magnetism, and band geometry/topology.

In this article, we review the nonlinear electrical transport in noncentrosymmetric van der Waals nanostructures obtained by exfoliation, nano-structure fabrication, or the application of an electric field, in particular, nonreciprocal transport resulting from inversion symmetry breaking and the bulk photovoltaic effect in nanomaterials without conventional - junctions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-060220-100347
2021-03-10
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/12/1/annurev-conmatphys-060220-100347.html?itemId=/content/journals/10.1146/annurev-conmatphys-060220-100347&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Bauer E, Sigrist M 2012. Non-centrosymmetric Superconductors: Introduction and Overview Berlin/Heidelberg: Springer-Verlag
    [Google Scholar]
  2. 2. 
    Yip S. 2014. Annu. Rev. Condens. Matter Phys. 5:15–33
    [Google Scholar]
  3. 3. 
    Bercioux D, Lucignano P. 2015. Rep. Prog. Phys. 78:106001
    [Google Scholar]
  4. 4. 
    Bihlmayer G, Rader O, Winkler R 2015. New J. Phys. 17:050202
    [Google Scholar]
  5. 5. 
    Jia S, Xu SY, Hasan MZ 2016. Nat. Mater. 15:1140–44
    [Google Scholar]
  6. 6. 
    Yan B, Felser C. 2017. Annu. Rev. Condens. Matter Phys. 8:337–54
    [Google Scholar]
  7. 7. 
    Burkov AA. 2018. Annu. Rev. Condens. Matter Phys. 9:359–78
    [Google Scholar]
  8. 8. 
    Bell JS, Jackiw R. 1969. Nuovo Cim. A 60:47–61
    [Google Scholar]
  9. 9. 
    Adler SL. 1969. Phys. Rev. 177:2426–38
    [Google Scholar]
  10. 10. 
    Li Q, Kharzeev DE, Zhang C, Huang Y, Pletikosic I et al. 2016. Nat. Phys. 12:550–54
    [Google Scholar]
  11. 11. 
    Xiong J, Kushwaha SK, Liang T, Krizan JW, Hirschberger M et al. 2015. Science 350:413–16
    [Google Scholar]
  12. 12. 
    Li H, He H, Lu HZ, Zhang H, Liu H et al. 2016. Nat. Commun. 7:10301
    [Google Scholar]
  13. 13. 
    Huang X, Zhao L, Long Y, Wang P, Chen D et al. 2015. Phys. Rev. X 5:031023
    [Google Scholar]
  14. 14. 
    Zhang CL, Xu SY, Belopolski I, Yuan Z, Lin Z et al. 2016. Nat. Commun. 7:10735
    [Google Scholar]
  15. 15. 
    Arnold F, Shekhar C, Wu SC, Sun Y, dos Reis RD et al. 2016. Nat. Commun. 7:11615
    [Google Scholar]
  16. 16. 
    Nagaosa N, Sinova J, Onoda S, MacDonald AH, Ong NP 2010. Rev. Mod. Phys. 82:1539–92
    [Google Scholar]
  17. 17. 
    Murakami S, Nagaosa N, Zhang SC 2003. Science 301:1348–51
    [Google Scholar]
  18. 18. 
    Kato YK, Myers RC, Gossard AC, Awschalom DD 2004. Science 306:1910–13
    [Google Scholar]
  19. 19. 
    Mak KF, McGill KL, Park J, McEuen PL 2014. Science 344:1489–92
    [Google Scholar]
  20. 20. 
    Onose Y, Ideue T, Katsura H, Shiomi Y, Nagaosa N et al. 2010. Science 329:297–99
    [Google Scholar]
  21. 21. 
    Ideue T, Onose Y, Katsura H, Shiomi Y, Ishiwata S et al. 2012. Phys. Rev. B 85:134411
    [Google Scholar]
  22. 22. 
    Ideue T, Kurumaji T, Ishiwata S, Tokura Y 2017. Nat. Mater. 16:797–802
    [Google Scholar]
  23. 23. 
    Onga M, Zhang Y, Ideue T, Iwasa Y 2017. Nat. Mater. 16:1193–97
    [Google Scholar]
  24. 24. 
    Tokura Y, Nagaosa N. 2018. Nat. Commun. 9:340
    [Google Scholar]
  25. 25. 
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK 2009. Rev. Mod. Phys. 81:109–62
    [Google Scholar]
  26. 26. 
    Xu X, Yao W, Xiao D, Heinz TF 2014. Nat. Phys. 10:343–50
    [Google Scholar]
  27. 27. 
    Saito Y, Nojima T, Iwasa Y 2016. Nat. Rev. Mater. 2:16094
    [Google Scholar]
  28. 28. 
    Fei Z, Palomaki T, Wu S, Zhao W, Cai X et al. 2017. Nat. Phys. 13:677–82
    [Google Scholar]
  29. 29. 
    Tang S, Zhang C, Wong D, Pedramrazi Z, Tsai H-Z et al. 2017. Nat. Phys. 13:683–87
    [Google Scholar]
  30. 30. 
    Fatemi V, Wu S, Cao Y, Bretheau L, Gibson QD et al. 2018. Science 362:926–29
    [Google Scholar]
  31. 31. 
    Gong C, Li L, Li Z, Ji H, Stern A et al. 2017. Nature 546:265–69
    [Google Scholar]
  32. 32. 
    Huang B, Clark G, Navarro-Moratalla E, Klein DR, Cheng R et al. 2017. Nature 546:270–73
    [Google Scholar]
  33. 33. 
    Charlier JC, Blase X, Roche S 2007. Rev. Mod. Phys. 79:677–732
    [Google Scholar]
  34. 34. 
    Laird EA, Kuemmeth F, Steele GA, Grove-Rasmussen K, Nygård J et al. 2015. Rev. Mod. Phys. 87:703–64
    [Google Scholar]
  35. 35. 
    Geim AK, Grigorieva IV. 2013. Nature 499:419–25
    [Google Scholar]
  36. 36. 
    Lee CH, Lee GH, van der Zande AM, Chen W, Li Y et al. 2014. Nat. Nanotechnol. 9:676–81
    [Google Scholar]
  37. 37. 
    Britnell L, Gorbachev RV, Jalil R, Belle BD, Schedin F et al. 2012. Science 335:947–50
    [Google Scholar]
  38. 38. 
    Song T, Cai X, Matisse W-YT, Zhang X, Huang B et al. 2018. Science 360:1214–18
    [Google Scholar]
  39. 39. 
    Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi JD, Watanabe K et al. 2012. Nat. Phys. 8:382–86
    [Google Scholar]
  40. 40. 
    Dean CR, Wang L, Maher P, Forsythe C, Ghahari F et al. 2013. Nature 497:598–602
    [Google Scholar]
  41. 41. 
    Cao Y, Fatemi V, Demir A, Fang S, Spencer L et al. 2018. Nature 556:80–84
    [Google Scholar]
  42. 42. 
    Cao Y, Fatami V, Fang S, Watanabe K, Taniguchi T et al. 2018. Nature 556:43–50
    [Google Scholar]
  43. 43. 
    Seyler KL, Rivera P, Yu H, Wilson NP, Ray EL et al. 2019. Nature 567:66–70
    [Google Scholar]
  44. 44. 
    Tran K, Moody G, Wu F, Lu X, Choi J et al. 2019. Nature 567:71–75
    [Google Scholar]
  45. 45. 
    Jin C, Regan EC, Yan A, Utama MIB, Wang D et al. 2019. Nature 567:76–80
    [Google Scholar]
  46. 46. 
    Liu Y, Rodrigues JNB, Luo YZ, Li L, Yang ACM et al. 2018. Nat. Nanotechnol. 13:828–34
    [Google Scholar]
  47. 47. 
    Rikken GLJA, Fölling J, Wyder P 2001. Phys. Rev. Lett. 87:236602
    [Google Scholar]
  48. 48. 
    Krstić V, Roth S, Burghard M, Kern K, Rikken GLJA 2002. J. Chem. Phys. 117:11315–19
    [Google Scholar]
  49. 49. 
    Pop F, Auban-Senzier P, Canadell E, Rikken GLJA 2014. Nat. Commun. 5:3757
    [Google Scholar]
  50. 50. 
    Rikken GLJA, Wyder P. 2005. Phys. Rev. Lett. 94:016601
    [Google Scholar]
  51. 51. 
    Olejník K, Novák V, Wunderlich J, Junwirth T 2015. Phys. Rev. B 91:18180402
    [Google Scholar]
  52. 52. 
    Avci CO, Garello K, Ghosh A, Gabureac M, Alvarado SF et al. 2015. Nat. Phys. 11:570–75
    [Google Scholar]
  53. 53. 
    Yasuda K, Tsukazaki A, Yoshimi R, Takahashi KS, Kawasaki M et al. 2016. Phys. Rev. Lett. 117:127202
    [Google Scholar]
  54. 54. 
    He P, Zhang SSL, Zhu D, Liu Y, Wang Y et al. 2018. Nat. Phys. 14:495–99
    [Google Scholar]
  55. 55. 
    He P, Walker SM, Zhang SSL, Bruno FY, Baharamy MS et al. 2018. Phys. Rev. Lett. 120:266802
    [Google Scholar]
  56. 56. 
    Choe D, Jin M-J, Kim S-I, Choi H-J, Jo J et al. 2019. Nat. Commun. 10:4510
    [Google Scholar]
  57. 57. 
    Guillet T, Zucchetti C, Barbedienne Q, Marty A, Isella G et al. 2020. Phys. Rev. Lett. 124:027201
    [Google Scholar]
  58. 58. 
    Lustikova J, Shiomi Y, Yokoi N, Kabeya N, Kimura N et al. 2018. Nat. Commun. 9:4922
    [Google Scholar]
  59. 59. 
    Yasuda K, Yasuda H, Liang T, Yoshimi R, Tsukazaki A et al. 2019. Nat. Commun. 10:2734
    [Google Scholar]
  60. 60. 
    Itahashi YM, Ideue T, Saito Y, Shimizu S, Ouchi T et al. 2020. Sci. Adv. 6:eaay9120
    [Google Scholar]
  61. 61. 
    Ideue T, Hamamoto K, Koshikawa S, Ezawa M, Shimizu S et al. 2017. Nat. Phys. 13:578–83
    [Google Scholar]
  62. 62. 
    He P, Hsu CH, Shi S, Cai K, Wang J et al. 2019. Nat. Commun. 10:1290
    [Google Scholar]
  63. 63. 
    Ishizaka K, Baharamy MS, Murakawa H, Sakano M, Shimojima T et al. 2011. Nat. Mater. 10:521–26
    [Google Scholar]
  64. 64. 
    Sakano M, Baharamy MS, Katayama A, Shimojima T, Murakawa H et al. 2013. Phys. Rev. Lett. 110:107204
    [Google Scholar]
  65. 65. 
    Murakawa H, Baharamy MS, Tokunaga M, Kohama Y, Bell C et al. 2013. Science 342:1490–93
    [Google Scholar]
  66. 66. 
    Ideue T, Checkelsky JG, Murakawa H, Baharamy MS, Kaneko Y et al. 2014. Phys. Rev. B 90:161107(R)
    [Google Scholar]
  67. 67. 
    Ideue T, Ye L, Checkelsky JG, Murakawa H, Kaneko Y et al. 2015. Phys. Rev. B 92:115144
    [Google Scholar]
  68. 68. 
    Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS 2012. Nat. Nanotechnol. 7:699–712
    [Google Scholar]
  69. 69. 
    Mak KF, Shan J. 2016. Nat. Photonics 10:216–26
    [Google Scholar]
  70. 70. 
    Zhu ZY, Cheng YC, Schwingenschlögl U 2011. Phys. Rev. B 84:153402
    [Google Scholar]
  71. 71. 
    Xiao D, Liu GB, Feng W, Xu X, Yao W 2010. Phys. Rev. Lett. 108:196802
    [Google Scholar]
  72. 72. 
    Bisri SZ, Shimizu S, Nakano M, Iwasa Y 2017. Adv. Mater. 29:1607054
    [Google Scholar]
  73. 73. 
    Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kumura N et al. 2008. Nat. Mater. 7:855–58
    [Google Scholar]
  74. 74. 
    Ueno K, Nakamura S, Shimotani H, Yuan HT, Kumura N et al. 2011. Nat. Nanotechnol. 6:408–12
    [Google Scholar]
  75. 75. 
    Ye JT, Zhang YJ, Akashi R, Bahramy MS, Arita R et al. 2012. Science 338:1193–96
    [Google Scholar]
  76. 76. 
    Saito Y, Nakamura Y, Bahramy MS, Kohama Y, Ye J et al. 2016. Nat. Phys. 12:144–49
    [Google Scholar]
  77. 77. 
    Lu JM, Zheliuk O, Leermakers I, Yuan NFQ, Zeitler U et al. 2015. Science 350:1353–57
    [Google Scholar]
  78. 78. 
    Xi X, Wang Z, Zhao W, Park JH, Law KT et al. 2016. Nat. Phys. 12:139–43
    [Google Scholar]
  79. 79. 
    Wakatsuki R, Saito Y, Hoshino S, Itahashi YM, Ideue T et al. 2017. Sci. Adv. 3:e1602390
    [Google Scholar]
  80. 80. 
    Liu GB, Shan WY, Yao Y, Yao W, Xiao D 2013. Phys. Rev. B 88:085433
    [Google Scholar]
  81. 81. 
    Kormànyos A, Zólyomi V, Drummond ND, Rakyta P, Burkard G et al. 2013. Phys. Rev. B 88:045416
    [Google Scholar]
  82. 82. 
    Wakatsuki R, Nagaosa N. 2018. Phys. Rev. Lett. 121:026601
    [Google Scholar]
  83. 83. 
    Saito Y, Kasahara Y, Ye J, Iwasa Y, Nojima T 2015. Science 350:409–13
    [Google Scholar]
  84. 84. 
    Tsen AW, Hunt B, Kim YD, Yuan ZJ, Jia S et al. 2016. Nat. Phys. 12:208–12
    [Google Scholar]
  85. 85. 
    Kapitulnik A, Kivelson SA, Spivak B 2019. Rev. Mod. Phys. 91:011002
    [Google Scholar]
  86. 86. 
    Itahashi YM, Saito Y, Ideue T, Nojima T, Iwasa Y 2020. Phys. Rev. Res. 2:023127
    [Google Scholar]
  87. 87. 
    Hoshino S, Wakatsuki R, Hamamoto K, Nagaosa N 2018. Phys. Rev. B 98:054510
    [Google Scholar]
  88. 88. 
    Villegas JE, Savel S, Nori F, Gonzalez EM 2003. Science 302:1188–91
    [Google Scholar]
  89. 89. 
    Villegas JE, Gonzalez EM, Gonzalez MP, Anguita JV, Vicent JL 2005. Phys. Rev. B 71:24519
    [Google Scholar]
  90. 90. 
    de Souza Silva CC, Van de Vondel J, Morelle M, Moshchalkov VV 2006. Nature 440:651–54
    [Google Scholar]
  91. 91. 
    Lu Q, Reichhardt CJO, Reichhardt C 2007. Phys. Rev. B 75:054502
    [Google Scholar]
  92. 92. 
    Kato A, Tanimura Y. 2013. J. Phys. Chem. B 117:13132–44
    [Google Scholar]
  93. 93. 
    Hamamoto K, Park T, Ishizuka H, Nagaosa N 2019. Phys. Rev. B 99:064307
    [Google Scholar]
  94. 94. 
    Yokouchi T, Hoshino S, Kanazawa N, Kikkawa A, Morikawa D et al. 2018. Sci. Adv. 4:eaat115
    [Google Scholar]
  95. 95. 
    Aoki R, Kousaka Y, Togawa Y 2019. Phys. Rev. Lett. 122:057206
    [Google Scholar]
  96. 96. 
    Rikken GLJA, Avarvari N. 2019. Phys. Rev. B 99:245153
    [Google Scholar]
  97. 97. 
    Ideue T, Hirayama M, Taiko H, Takahashi T, Murase M et al. 2019. PNAS 116:25530–34
    [Google Scholar]
  98. 98. 
    Sakano M, Hirayama M, Takahashi T, Akebi S, Nakayama M et al. 2020. Phys. Rev. Lett. 124:136404
    [Google Scholar]
  99. 99. 
    Qin F, Shi W, Ideue T, Yoshida M, Zak A et al. 2017. Nat. Commun. 8:14465
    [Google Scholar]
  100. 100. 
    Qin F, Ideue T, Shi W, Zhang X, Yoshida M et al. 2018. Nano Lett 18:6789–94
    [Google Scholar]
  101. 101. 
    Tenne R, Marguils L, Genut M, Hodes G 1992. Nature 360:444–60
    [Google Scholar]
  102. 102. 
    Rothschild A, Sloan J, Tenne R 2000. J. Am. Chem. Soc. 122:5169–79
    [Google Scholar]
  103. 103. 
    Zak A, Sallacan-Ecker L, Margolin A, Feldman Y, Popovitz-Biro R et al. 2010. Fullerene. Nanotubes, Carbon Nanostruct 19:18–26
    [Google Scholar]
  104. 104. 
    Shi W, Ye J, Zhang Y, Suzuki R, Yoshida M et al. 2015. Sci. Rep. 5:12534
    [Google Scholar]
  105. 105. 
    Qin F, Ideue T, Shi W, Zhang Y, Suzuki R et al. 2018. J. Vis. Exp. 134:e56862
    [Google Scholar]
  106. 106. 
    Little WA, Parks RD. 1962. Phys. Rev. Lett. 9:9–12
    [Google Scholar]
  107. 107. 
    Yu H, Wu Y, Liu GB, Xu X, Yao W 2014. Phys. Rev. Lett. 113:156603
    [Google Scholar]
  108. 108. 
    Isobe H, Xu SY, Fu L 2020. Sci. Adv. 6:eaay2497
    [Google Scholar]
  109. 109. 
    Morimoto T, Nagaosa N. 2018. Sci. Rep. 8:2973
    [Google Scholar]
  110. 110. 
    Sodemann I, Fu L. 2015. Phys. Rev. Lett. 115:21806
    [Google Scholar]
  111. 111. 
    Zhang Y, Sun Y, Yan B 2018. Phys. Rev. B 97:041101(R)
    [Google Scholar]
  112. 112. 
    Ma Q, Xu SY, Shen H, MacNeill D, Fatemi V et al. 2019. Nature 565:337–42
    [Google Scholar]
  113. 113. 
    Kang K, Li T, Sohn E, Shan J, Mak KF 2019. Nat. Mater. 18:324–28
    [Google Scholar]
  114. 114. 
    Sturman BI, Fridkin VM. 1992. The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials Philadelphia, PA: Gordon and Breach Sci. Publ.
    [Google Scholar]
  115. 115. 
    Shockley W. 1949. AT&T Tech. J. 28:435–89
    [Google Scholar]
  116. 116. 
    Ma Q, Xu SY, Chan CK, Zhang CL, Chang G et al. 2017. Nat. Phys. 13:842–47
    [Google Scholar]
  117. 117. 
    Xu SY, Ma Q, Shen H, Fatemi V, Wu S et al. 2018. Nat. Phys. 14:900–6
    [Google Scholar]
  118. 118. 
    Osterhoudt GB, Diebel LK, Gray MJ, Yang X, Stanco J et al. 2019. Nat. Mater. 18:471–75
    [Google Scholar]
  119. 119. 
    Rees D, Manna K, Lu B, Morimoto T, Borrmann H et al. 2020. Sci. Adv. 6:eaba0509
    [Google Scholar]
  120. 120. 
    Morimoto T, Nagaosa N. 2016. Sci. Adv. 2:e1501524
    [Google Scholar]
  121. 121. 
    Juan F, Grushin AG, Morimoto T, Morre JE 2017. Nat. Commun. 8:15995
    [Google Scholar]
  122. 122. 
    Fregoso BM, Morimoto T, Moore JE 2017. Phys. Rev. B 96:075421
    [Google Scholar]
  123. 123. 
    Grinberg I, West DV, Torres M, Gou G, Stein DM et al. 2013. Nature 503:509–12
    [Google Scholar]
  124. 124. 
    Brody PS. 1975. J. Solid State Chem. 12:193–200
    [Google Scholar]
  125. 125. 
    Yang SY, Seidel J, Byrnes SJ, Shafer P, Yang CH et al. 2010. Nat. Nanotechnol. 5:143–47
    [Google Scholar]
  126. 126. 
    Nechache R, Harnagea C, Licoccia S, Traversa E, Ruediger A et al. 2011. Appl. Phys. Lett. 98:202902
    [Google Scholar]
  127. 127. 
    Nakamura M, Kagawa F, Tanigaki T, Park HS, Matsuda T et al. 2016. Phys. Rev. Lett. 116:156801
    [Google Scholar]
  128. 128. 
    Nakamura M, Horiuchi S, Kagawa F, Ogawa N, Kurumaji T et al. 2017. Nat. Commun. 8:281
    [Google Scholar]
  129. 129. 
    Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q et al. 2015. Nat. Mater. 14:193–98
    [Google Scholar]
  130. 130. 
    Sun Z, Liu X, Khan T, Ji C, Asghar MA et al. Angew. Chem., Int. Ed. 55:6545–50
    [Google Scholar]
  131. 131. 
    Ogawa N, Sotome M, Kaneko Y, Ogino M, Tokura Y 2017. Phys. Rev. B 96:241203
    [Google Scholar]
  132. 132. 
    Sotome M, Nakamura M, Fujioka J, Ogino M, Kaneko Y et al. 2019. PNAS 116:1929–33
    [Google Scholar]
  133. 133. 
    Cook AM, Fregoso BM, Juan F, Coh S, Moore JE 2017. Nat. Commun. 8:14176
    [Google Scholar]
  134. 134. 
    Rangel T, Fregoso BM, Mendoza BS, Morimoto T, Moore JE et al. 2017. Phys. Rev. Lett. 119:067402
    [Google Scholar]
  135. 135. 
    Zhang YJ, Ideue T, Onga M, Qin F, Suzuki R et al. 2019. Nature 570:349–53
    [Google Scholar]
  136. 136. 
    Nakhmanson SM, Calzolari A, Meunier V, Bernholc J, Nardelli MB 2003. Phys. Rev. B 67:235406
    [Google Scholar]
  137. 137. 
    Kral P, Mele EJ, Tomanek D 2000. Phys. Rev. Lett. 85:1512–15
    [Google Scholar]
  138. 138. 
    Tauc J. 1957. Rev. Mod. Phys. 29:308–24
    [Google Scholar]
  139. 139. 
    Zhang C, Wang S, Yang L, Liu Y, Xu T et al. 2012. Appl. Phys. Lett. 100:243101
    [Google Scholar]
  140. 140. 
    Yuan YB, Xiao ZG, Yang B, Huang JS 2014. J. Mater. Chem. A 2:6027–41
    [Google Scholar]
  141. 141. 
    Yuan H, Wang X, Lian B, Zhang H, Fang X et al. 2014. Nat. Nanotechnol. 9:851–57
    [Google Scholar]
  142. 142. 
    Ogawa N, Baharamy MS, Kaneko Y, Tokura Y 2014. Phys. Rev. B 90:125122
    [Google Scholar]
  143. 143. 
    Okada KN, Ogawa N, Yoshimi R, Tsukazaki A, Takahashi KS 2016. Phys. Rev. B 93:081403
    [Google Scholar]
  144. 144. 
    Ganichev SD, Prettl W. 2003. J. Phys. Condens. Matter 15:R935–83
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-060220-100347
Loading
/content/journals/10.1146/annurev-conmatphys-060220-100347
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error