1932

Abstract

Nature has designed multifaceted cellular structures to support life. Cells contain a vast array of enzymes that collectively perform essential tasks by harnessing energy from chemical reactions. Despite the complexity, intra- and intercellular motility at low Reynolds numbers remain the epicenter of life. In the past decade, detailed investigations on enzymes that are freely dispersed in solution have revealed concentration-dependent enhanced diffusion and chemotactic behavior during catalysis. Theoretical calculations and simulations have determined the magnitude of the impulsive force per turnover; however, an unequivocal consensus regarding the mechanism of enhanced diffusion has not been reached. Furthermore, this mechanical force can be transferred from the active enzymes to inert particles or surrounding fluid, thereby providing a platform for the design of biomimetic systems. Understanding the factors governing enzyme motion would help us to understand organization principles for dissipative self-assembly and the fabrication of molecular machines. The purpose of this article is to review the different classes of enzyme motility and discuss the possible mechanisms as gleaned from experimental observations and theoretical modeling. Finally, we focus on the relevance of enzyme motion in biology and its role in future applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-061020-053036
2021-03-10
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/12/1/annurev-conmatphys-061020-053036.html?itemId=/content/journals/10.1146/annurev-conmatphys-061020-053036&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Sengupta S, Dey KK, Muddana HS, Tabouillot T, Ibele ME et al. 2013. J. Am. Chem. Soc. 135:1406–14
    [Google Scholar]
  2. 2. 
    Dey KK, Zhao X, Tansi BM, Méndez-Ortiz WJ, Córdova-Figueroa UM et al. 2015. Nano Lett 15:8311–15
    [Google Scholar]
  3. 3. 
    Ma X, Jannasch A, Albrecht UR, Hahn K, Miguel-López A et al. 2015. Nano Lett 15:7043–50
    [Google Scholar]
  4. 4. 
    Ma X, Hortelão AC, Miguel-López A, Sánchez S 2016. J. Am. Chem. Soc. 138:13782–85
    [Google Scholar]
  5. 5. 
    Ma X, Hortelão AC, Patiño T, Sánchez S 2016. ACS Nano 10:9111–22
    [Google Scholar]
  6. 6. 
    Zhao X, Gentile K, Mohajerani F, Sen A 2018. Acc. Chem. Res. 51:2373–81
    [Google Scholar]
  7. 7. 
    Ramaswamy S 2010. Annu. Rev. Condens. Matter Phys. 1:323–45
    [Google Scholar]
  8. 8. 
    Romanczuk P, Bär M, Ebeling W, Lindner B, Schimansky-Geier L 2012. Eur. Phys. J. Spec. Top. 202:1–162
    [Google Scholar]
  9. 9. 
    Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J et al. 2013. Rev. Mod. Phys. 85:1143–89
    [Google Scholar]
  10. 10. 
    Jülicher F, Grill SW, Salbreux G 2018. Rep. Prog. Phys. 81:076601
    [Google Scholar]
  11. 11. 
    Purcell EM. 1977. Am. J. Phys. 45:3
    [Google Scholar]
  12. 12. 
    Butler PJ, Dey KK, Sen A 2015. Cell Mol. Bioeng. 8:106–18
    [Google Scholar]
  13. 13. 
    Berg HC. 1993. Random Walks in Biology Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  14. 14. 
    Hoyt MA, Hyman AA, Bähler M 1997. PNAS 94:12747–48
    [Google Scholar]
  15. 15. 
    Vale RD, Milligan RA. 2000. Science 288:88–95
    [Google Scholar]
  16. 16. 
    Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA 2013. Nat. Rev. Mol. Cell Biol. 14:713–26
    [Google Scholar]
  17. 17. 
    Goel A, Vogel V. 2008. Nat. Nanotechnol. 3:465–75
    [Google Scholar]
  18. 18. 
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K et al. 2002. Molecular Biology of the Cell New York: Garland Sci.
    [Google Scholar]
  19. 19. 
    Spudich JA, Rice SE, Rock RS, Purcell TJ, Warrick HM 2011. Cold Spring Harb. Protoc. 2011:1305–18
    [Google Scholar]
  20. 20. 
    Mikhailov AS, Kapral R. 2015. PNAS 112:E3639–44
    [Google Scholar]
  21. 21. 
    Agudo-Canalejo J, Adeleke-Larodo T, Illien P, Golestanian R 2018. Acc. Chem. Res. 51:2365–72
    [Google Scholar]
  22. 22. 
    Golestanian R, Liverpool TB, Ajdari A 2005. Phys. Rev. Lett. 94:220801
    [Google Scholar]
  23. 23. 
    Muddana HS, Sengupta S, Mallouk TE, Sen A, Butler PJ 2010. J. Am. Chem. Soc. 132:2110–11
    [Google Scholar]
  24. 24. 
    Xu M, Ross JL, Valdez L, Sen A 2019. Phys. Rev. Lett. 123:128101
    [Google Scholar]
  25. 25. 
    Sengupta S, Patra D, Ortiz-Rivera I, Agrawal A, Shklyaev S et al. 2014. Nat. Chem. 6:415–22
    [Google Scholar]
  26. 26. 
    Hortelão AC, Patiño T, Perez‐Jiménez A, Blanco A, Sánchez S 2018. Adv. Funct. Mater. 28:1705086
    [Google Scholar]
  27. 27. 
    Walker D, Käsdorf BT, Jeong HH, Lieleg O, Fischer P 2015. Sci. Adv. 1:e1500501
    [Google Scholar]
  28. 28. 
    Dey KK, Sen A. 2017. J. Am. Chem. Soc. 139:7666–76
    [Google Scholar]
  29. 29. 
    Zhao X, Palacci H, Yadav V, Spiering MM, Gilson MK et al. 2018. Nat. Chem. 10:311–17
    [Google Scholar]
  30. 30. 
    Wu F, Pelster LN, Minteer SD 2015. Chem. Comm. 51:1244–47
    [Google Scholar]
  31. 31. 
    Sengupta S, Spiering MM, Dey KK, Duan W, Patra D et al. 2014. ACS Nano 8:2410–18
    [Google Scholar]
  32. 32. 
    Illien P, Zhao X, Dey KK, Butler PJ, Sen A, Golestanian R 2017. Nano Lett 17:4415–20
    [Google Scholar]
  33. 33. 
    Zhao X, Dey KK, Jeganathan S, Butler PJ, Córdova-Figueroa UM, Sen A 2017. Nano Lett 17:4807–12
    [Google Scholar]
  34. 34. 
    Sun L, Gao Y, Xu Y, Chao J, Liu H et al. 2017. J. Am. Chem. Soc. 139:17525–32
    [Google Scholar]
  35. 35. 
    Börsch M, Turina P, Eggeling C, Fries JR, Seidel CA et al. 1998. FEBS Lett 437:251–54
    [Google Scholar]
  36. 36. 
    Günther JP, Börsch M, Fischer P 2018. Acc. Chem. Res. 51:1911–20
    [Google Scholar]
  37. 37. 
    Bai X, Wolynes PG. 2015. J. Chem. Phys. 143:165101
    [Google Scholar]
  38. 38. 
    Paliwal S, Wales M, Good T, Grimsley J, Wild J, Simonian A 2007. Anal. Chim. Acta. 596:9–15
    [Google Scholar]
  39. 39. 
    Zhang Y, Hess H. 2019. ACS Cent. Sci. 5:939–48
    [Google Scholar]
  40. 40. 
    Ghosh S, Mohajerani F, Son S, Velegol D, Butler PJ, Sen A 2019. Nano Lett 19:6019–26
    [Google Scholar]
  41. 41. 
    Arqué X, Romero-Rivera A, Feixas F, Patiño T, Osuna S, Sánchez S 2019. Nat. Comm. 10:2826
    [Google Scholar]
  42. 42. 
    Incicco JJ, Gebhard LG, González-Lebrero RM, Gamarnik AV, Kaufman SB 2013. PLOS ONE 8:e58508
    [Google Scholar]
  43. 43. 
    Jee AY, Dutta S, Cho YK, Tlusty T, Granick S 2018. PNAS 115:14–18
    [Google Scholar]
  44. 44. 
    Leckie J, Hope A, Hughes M, Debnath S, Fleming S et al. 2014. ACS Nano 8:9580–89
    [Google Scholar]
  45. 45. 
    Jiang L, Santiago I, Foord J 2017. Chem. Comm. 53:8332–35
    [Google Scholar]
  46. 46. 
    Patiño T, Feiner-Gracia N, Arqué X, Miguel-López A, Jannasch A et al. 2018. J. Am. Chem. Soc. 140:7896–903
    [Google Scholar]
  47. 47. 
    Feng M, Gilson MK. 2020. Annu. Rev. Biophys. 49:87–105
    [Google Scholar]
  48. 48. 
    Yu H, Jo K, Kounovsky KL, de Pablo JJ, Schwartz DC 2009. J. Am. Chem. Soc. 131:5722–23
    [Google Scholar]
  49. 49. 
    Golestanian R. 2009. Phys. Rev. Lett. 102:188305
    [Google Scholar]
  50. 50. 
    Riedel C, Gabizon R, Wilson CA, Hamadani K, Tsekouras K et al. 2015. Nature 517:227–30
    [Google Scholar]
  51. 51. 
    Leitner DM. 2008. Annu. Rev. Phys. Chem. 59:233–59
    [Google Scholar]
  52. 52. 
    Golestanian R. 2015. Phys. Rev. Lett. 115:108102
    [Google Scholar]
  53. 53. 
    Zhang Y, Armstrong MJ, Bassir Kazeruni NM, Hess H 2018. Nano Lett 18:8025–29
    [Google Scholar]
  54. 54. 
    Günther JP, Majer G, Fischer P 2019. J. Chem. Phys. 150:124201
    [Google Scholar]
  55. 55. 
    Dennison M, Kapral R, Stark H 2017. Soft Matter 13:3741–49
    [Google Scholar]
  56. 56. 
    Sakaue T, Kapral R, Mikhailov A 2010. Eur. Phys. J. B 75:381–87
    [Google Scholar]
  57. 57. 
    Jee AY, Chen K, Tlusty T, Zhao J, Granick S 2019. J. Am. Chem. Soc. 141:20062–68
    [Google Scholar]
  58. 58. 
    Yin H, Wang MD, Svoboda K, Landick R, Block SM, Gelles J 1995. Science 270:1653–57
    [Google Scholar]
  59. 59. 
    Mehta AD, Rief M, Spudich JA, Smith DA, Simmons RM 1999. Science 283:1689–95
    [Google Scholar]
  60. 60. 
    Mahadevan L, Matsudaira P. 2000. Science 288:95–100
    [Google Scholar]
  61. 61. 
    Colberg PH, Kapral R. 2014. Europhys. Lett. 106:30004
    [Google Scholar]
  62. 62. 
    Golestanian R. 2010. Phys. Rev. Lett. 105:018103
    [Google Scholar]
  63. 63. 
    Feng M, Gilson MK. 2019. Biophys. J. 116:1898–906
    [Google Scholar]
  64. 64. 
    Lauga E. 2011. Phys Rev. Lett. 106:178101
    [Google Scholar]
  65. 65. 
    Kondrat S, Popescu MN. 2019. Phys. Chem. Chem. Phys. 21:18811–15
    [Google Scholar]
  66. 66. 
    Jee AY, Cho YK, Granick S, Tlusty T 2018. PNAS 115:E10812–21
    [Google Scholar]
  67. 67. 
    Agudo-Canalejo J, Illien P, Golestanian R 2018. Nano Lett 18:2711–17
    [Google Scholar]
  68. 68. 
    Weistuch C, Pressé S. 2018. J. Phys. Chem. B 122:5286–90
    [Google Scholar]
  69. 69. 
    Xu C, Hu S, Chen X 2016. Mater. Today 19:516–32
    [Google Scholar]
  70. 70. 
    Wang W, Duan W, Ahmed S, Sen A, Mallouk TE 2015. Acc. Chem. Res. 48:1938–46
    [Google Scholar]
  71. 71. 
    Somasundar A, Ghosh S, Mohajerani F, Massenburg LN, Yang T et al. 2019. Nat. Nanotechnol. 14:1129–34
    [Google Scholar]
  72. 72. 
    Mohajerani F, Zhao X, Somasundar A, Velegol D, Sen A 2018. Biochemistry 57:6256–63
    [Google Scholar]
  73. 73. 
    Wilson DA, Nolte RJ, van Hest JC 2012. Nat. Chem. 4:268–74
    [Google Scholar]
  74. 74. 
    Peng F, Tu Y, van Hest JC, Wilson DA 2015. Angew. Chem. Int. Ed. 54:11662–65
    [Google Scholar]
  75. 75. 
    Abdelmohsen LK, Nijemeisland M, Pawar GM, Janssen GJ, Nolte RJ et al. 2016. ACS Nano 10:2652–60
    [Google Scholar]
  76. 76. 
    Joseph A, Contini C, Cecchin D, Nyberg S, Ruiz-Perez L et al. 2017. Sci. Adv. 3:e1700362
    [Google Scholar]
  77. 77. 
    Anderson JL. 1983. Phys. Fluids 26:2871
    [Google Scholar]
  78. 78. 
    Nardi J, Bruinsma R, Sackmann E 1999. Phys. Rev. Lett. 82:5168–71
    [Google Scholar]
  79. 79. 
    Kodama A, Sakuma Y, Imai M, Kawakatsu T, Puff N, Angelova MI 2017. Langmuir 33:10698–706
    [Google Scholar]
  80. 80. 
    Gupta S, Sreeja KK, Thakur S 2015. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92:042703
    [Google Scholar]
  81. 81. 
    Küchler A, Yoshimoto M, Luginbühl S, Mavelli F, Walde P 2016. Nat. Nanotechnol. 11:409–20
    [Google Scholar]
  82. 82. 
    Qiao Y, Li M, Booth R, Mann S 2017. Nat. Chem. 9:110–19
    [Google Scholar]
  83. 83. 
    Pavan Kumar BVVS, Patil AJ, Mann S 2018. Nat. Chem. 10:1154–63
    [Google Scholar]
  84. 84. 
    Jang WS, Kim HJ, Gao C, Lee D, Hammer DA 2018. Small 14:e1801715
    [Google Scholar]
  85. 85. 
    Zhang Y, Cremer PS. 2006. Curr. Opin. Chem. Biol. 10:658–63
    [Google Scholar]
  86. 86. 
    Dey KK, Das S, Poyton MF, Sengupta S, Butler PJ et al. 2014. ACS Nano 8:11941–49
    [Google Scholar]
  87. 87. 
    Ilacas GC, Basa A, Sen A, Gomez FA 2018. Anal. Sci. 34:115–19
    [Google Scholar]
  88. 88. 
    Saha S, Golestanian R, Ramaswamy S 2014. Phys. Rev. E 89:062316
    [Google Scholar]
  89. 89. 
    Schurr JM, Fujimoto BS, Huynh L, Chiu DT 2013. J. Phys. Chem. B 117:7626–52
    [Google Scholar]
  90. 90. 
    Sitt A, Hess H. 2015. Nano Lett 15:3341–50
    [Google Scholar]
  91. 91. 
    Zhang C, Sitt A, Koo HJ, Waynant KV, Hess H et al. 2015. J. Am. Chem. Soc. 137:5066–73
    [Google Scholar]
  92. 92. 
    Maiti S, Shklyaev OE, Balazs AC, Sen A 2019. Langmuir 35:3724–32
    [Google Scholar]
  93. 93. 
    Alarcón-Correa M, Günther JP, Troll J, Kadiri VM, Bill J et al. 2019. ACS Nano 13:5810–15
    [Google Scholar]
  94. 94. 
    Ortiz-Rivera I, Courtney TM, Sen A 2016. Adv. Funct. Mater. 26:2135–42
    [Google Scholar]
  95. 95. 
    Ortiz-Rivera I, Shum H, Agrawal A, Sen A, Balazs AC 2016. PNAS 113:2585–90
    [Google Scholar]
  96. 96. 
    Valdez L, Shum H, Ortiz-Rivera I, Balazs AC, Sen A 2017. Soft Matter 13:2800–7
    [Google Scholar]
  97. 97. 
    Das S, Shklyaev OE, Altemose A, Shum H, Ortiz-Rivera I et al. 2017. Nat. Commun. 8:14384
    [Google Scholar]
  98. 98. 
    Laskar A, Shklyaev OE, Balazs AC 2019. PNAS 116:9257–62
    [Google Scholar]
  99. 99. 
    Vale RD. 2003. Cell 112:467–80
    [Google Scholar]
  100. 100. 
    Freedman RB. 1981. New Compr. Biochem. 1:161–214
    [Google Scholar]
  101. 101. 
    Dufrêne YF, Evans E, Engel A, Helenius J, Gaub HE, Müller DJ 2011. Nat. Methods 8:123–27
    [Google Scholar]
  102. 102. 
    Yamada S, Wirtz D, Kuo SC 2000. Biophys. J. 78:1736–47
    [Google Scholar]
  103. 103. 
    Guo M, Ehrlicher AJ, Jensen MH, Renz M, Moore JR et al. 2014. Cell 158:822–32
    [Google Scholar]
  104. 104. 
    Zhao X, Sen A. 2019. Methods Enzymol 6174562
    [Google Scholar]
  105. 105. 
    Seger R, Krebs EG. 1995. FASEB J 9:726–35
    [Google Scholar]
  106. 106. 
    Zhang Y, Hess H. 2017. ACS Catal 7:6018–27
    [Google Scholar]
  107. 107. 
    Llopis-Lorente A, García-Fernández A, Murillo-Cremaes N, Hortelão AC, Patiño T et al. 2019. ACS Nano 13:12171–83
    [Google Scholar]
  108. 108. 
    Hortelão AC, Carrascosa R, Murillo-Cremaes N, Patiño T, Sánchez S 2019. ACS Nano 13:429–39
    [Google Scholar]
  109. 109. 
    Patiño T, Porchetta A, Jannasch A, Lladó A, Stumpp T et al. 2019. Nano Lett 19:3440–47
    [Google Scholar]
  110. 110. 
    Xu D, Wang Y, Liang C, You Y, Sánchez S, Ma X 2020. Small 16:27e1902464
    [Google Scholar]
  111. 111. 
    Wang L, Song S, van Hest J, Abdelmohsen LKEA, Huang X, Sánchez S 2020. Small 16:27e1907680
    [Google Scholar]
  112. 112. 
    Ou J, Liu K, Jiang J, Wilson DA, Liu L et al. 2020. Small 16:27e1906184
    [Google Scholar]
  113. 113. 
    Keller S, Toebes BJ, Wilson DA 2019. Biomacromolecules 20:1135–45
    [Google Scholar]
  114. 114. 
    Tu Y, Peng F, André AA, Men Y, Srinivas M, Wilson DA 2017. ACS Nano 11:1957–63
    [Google Scholar]
  115. 115. 
    Sun J, Mathesh M, Li W, Wilson DA 2019. ACS Nano 13:10191–200
    [Google Scholar]
  116. 116. 
    Nijemeisland M, Abdelmohsen LK, Huck WT, Wilson DA, van Hest JC 2016. ACS Cent. Sci. 2:843–49
    [Google Scholar]
  117. 117. 
    Toebes BJ, Cao F, Wilson DA 2019. Nat. Commun. 10:5308
    [Google Scholar]
  118. 118. 
    Messager L, Gaitzsch J, Chierico L, Battaglia G 2014. Curr. Opin. Pharmacol. 18:104–11
    [Google Scholar]
  119. 119. 
    Tu Y, Peng F, Adawy A, Men Y, Abdelmohsen LK, Wilson DA 2016. Chem. Rev. 116:2023–78
    [Google Scholar]
  120. 120. 
    Peng F, Tu Y, Wilson DA 2017. Chem. Soc. Rev. 46:5289–310
    [Google Scholar]
  121. 121. 
    Patiño T, Mestre R, Sánchez S 2016. Lab Chip 16:3626–30
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-061020-053036
Loading
/content/journals/10.1146/annurev-conmatphys-061020-053036
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error