1932

Abstract

Recent advances in Raman spectroscopy for characterizing graphene, graphite, and carbon nanotubes are reviewed comparatively. We first discuss the first-order and the double-resonance (DR) second-order Raman scattering mechanisms in graphene, which give rise to the most prominent Raman features. Then, we review phonon-softening phenomena in Raman spectra as a function of gate voltage, which is known as the Kohn anomaly. Finally, we review exciton-specific phenomena in the resonance Raman spectra of single-wall carbon nanotubes (SWNTs). Raman spectroscopy of SWNTs has been especially useful for understanding many fundamental properties of all sp2 carbons, given SWNTs can be either semiconducting or metallic depending on their geometric structure, which is denoted by two integers (,).

Erratum

An erratum has been published for this article:
Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy
Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-070909-103919
2010-08-10
2025-04-24
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/1/1/annurev-conmatphys-070909-103919.html?itemId=/content/journals/10.1146/annurev-conmatphys-070909-103919&mimeType=html&fmt=ahah

Literature Cited

  1. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A. 2005. Phys. Rep 409:4799 [Google Scholar]
  2. Jorio A, Pimenta MA, Souza Filho AG, Saito R, Dresselhaus G, Dresselhaus MS. 2003. N. J. Phys 5:139117 [Google Scholar]
  3. Saito R, Grüneis A, Samsonidze GG, Brar VW, Dresselhaus G et al. 2003. N. J. Phys 5:157115 [Google Scholar]
  4. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cançado LG, Jorio A, Saito R. 2007. Phys. Chem. Chem. Phys 9:127691 [Google Scholar]
  5. Saito R, Dresselhaus G, Dresselhaus MS. 1998. Physical Properties of Carbon Nanotubes London: Imperial Coll. Press [Google Scholar]
  6. Malard LM, Guimares MHD, Mafra DL, Massoni MSC, Jorio A. 2009. Phys. Rev. B 79:125426 [Google Scholar]
  7. Jorio A, Saito R, Dresselhaus MS. 2010. Raman Spectroscopy in Nanoscience and Nanometrology: Carbon Nanotubes, Nanographite and Graphene WeinHeim, Ger: Wiley-VCH Verlag GmbH & Co KGaA In press [Google Scholar]
  8. Farhat H, Son H, Samsonidze GG, Reich S, Dresselhaus MS, Kong J. 2007. Phys. Rev. Lett 99:145506 [Google Scholar]
  9. Sasaki K, Saito R, Dresselhaus G, Dresselhaus MS, Farhat H, Kong J. 2008. Phys. Rev. B 77:245441 [Google Scholar]
  10. Tuinstra F, Koenig JL. 1970. J. Phys. Chem 53:112630 [Google Scholar]
  11. Sato K, Saito R, Oyama Y, Jiang J, Cançado LG et al. 2006. Chem. Phys. Lett 427:11721 [Google Scholar]
  12. Rao AM, Richter E, Bandow S, Chase B, Eklund PC et al. 1997. Science 275:18791 [Google Scholar]
  13. Jorio A, Saito R, Hafner JH, Lieber CM, Hunter M et al. 2001. Phys. Rev. Lett 86:111821 [Google Scholar]
  14. Lazzeri M, Attaccalite C, Wirtz L, Mauri F. 2008. Phys. Rev. B 78:R0814069 [Google Scholar]
  15. Dresselhaus MS, Dresselhaus G, Sugihara K, Spain IL, Goldberg HA. 1988. Graphite Fibers and Filaments. Springer Ser. Mater. Sci., 51382 Berlin: Springer-Verlag [Google Scholar]
  16. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS. 2009. Phys. Rep 473:5187 [Google Scholar]
  17. McClure JW. 1957. Phys. Rev 108:61218 [Google Scholar]
  18. Slonczewski JC, Weiss PR. 1958. Phys. Rev 109:27279 [Google Scholar]
  19. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y et al. 2004. Science 306:66669 [Google Scholar]
  20. Geim AK. 2009. Science 324:(5934)153034 [Google Scholar]
  21. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI et al. 2005. Nature 438:197200 [Google Scholar]
  22. Geim AK, Novoselov KS. 2007. Nat. Mater 6:18391 [Google Scholar]
  23. Affoune A, Prasad BLV, Sato H, Enoki T, Hishiyama Y, Kaburagi Y. 2001. Chem. Phys. Lett 348:1720 [Google Scholar]
  24. Berger C, Song Z, Li T, Li X, Ogbazghi AY et al. 2004. J. Phys. Chem. B 108:1991216 [Google Scholar]
  25. Berger C, Song Z, Li X, Wu X, Brown N et al. 2006. Science 312:119196 [Google Scholar]
  26. Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus MS et al. 2009. Nano Res 2:50916 [Google Scholar]
  27. Dresselhaus MS, Dresselhaus G, Eklund PC. 1996. Science of Fullerenes and Carbon Nanotubes New York/San Diego, CA: Academic [Google Scholar]
  28. Dresselhaus MS, Dresselhaus G. 1982. Light Scattering in Graphite Intercalation Compounds, Light Scattering in Solids III. Vol. 51: Top. Appl. Phys Cardona M, Güntherodt G. 357 Berlin: Springer-Verlag [Google Scholar]
  29. Reich S, Jantoljak H, Thomsen C. 2000. Phys. Rev. B 61:R1338992 [Google Scholar]
  30. Grüneis A. 2004. Resonance Raman spectroscopy of single wall carbon nanotubes PhD thesis Tohoku Univ120 [Google Scholar]
  31. Reich S, Thomsen C. 2004. Philos. Trans. Ser. A 362:227188 [Google Scholar]
  32. Saito R, Jorio A, Souza Filho AG, Dresselhaus G, Dresselhaus MS, Pimenta MA. 2001. Phys. Rev. Lett 88:027401 [Google Scholar]
  33. Park JS, Reina A, Saito R, Kong J, Dresselhaus G, Dresselhaus MS. 2009. Carbon 47:130310 [Google Scholar]
  34. Malard LM, Elias DC, Alves ES, Pimenta MA. 2008. Phys. Rev. Lett 101:257401 [Google Scholar]
  35. Ando T. 2007. J. Phys. Soc. Jpn 76:104711 [Google Scholar]
  36. Jorio A, Souza Filho AG, Dresselhaus G, Dresselhaus MS, Swan AK et al. 2002. Phys. Rev. B 65:155412 [Google Scholar]
  37. Brown SDM, Jorio A, Corio P, Dresselhaus MS, Dresselhaus G et al. 2001. Phys. Rev. B 63:155414 [Google Scholar]
  38. Park JS, Sasaki K, Saito R, Izumida W, Kalbac M et al. 2009. Phys. Rev. B 80:R081402 [Google Scholar]
  39. Kalbac M, Farhat H, Kavan L, Kong J, Sasaki K et al. 2009. ACS Nano 3:232028 [Google Scholar]
  40. Farhat H, Sasaki K, Kalbac M, Hofmann M, Saito R et al. 2009. Phys. Rev. Lett 102:126804 [Google Scholar]
  41. Saito R, Dresselhaus G, Dresselhaus MS. 2000. Phys. Rev. B 61:298190 [Google Scholar]
  42. Kataura H, Kumazawa Y, Kojima N, Maniwa Y, Umezu I et al. 1999. Proc. Int. Winter Sch. Electron. Prop. Novel Mater. (IWEPNM'99) Kuzmany H, Mehring M, Fink J. AIP Conf. Proc. 48632832 [Google Scholar]
  43. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB. 2002. Science 298:236166 [Google Scholar]
  44. Araujo PT, Jorio A. 2008. Phys. Status Solidi B 245:22014 [Google Scholar]
  45. Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S. 2004. Science 306:136265 [Google Scholar]
  46. Joselevich E, Dai H, Liu J, Hata K, Windle A. 2008. Top. Appl. Phys 111:10164 [Google Scholar]
  47. Araujo PT, Doorn SK, Kilina S, Tretiak S, Einarsson E et al. 2007. Phys. Rev. Lett 98:067401 [Google Scholar]
  48. Doorn SK, Araujo PT, Hata K, Jorio A. 2008. Phys. Rev. B 78:165408 [Google Scholar]
  49. Samsonidze GG, Saito R, Jorio A, Pimenta MA, Souza Filho AG et al. 2003. J. Nanosci. Nanotechnol 3:43158 [Google Scholar]
  50. Saito R, Sato K, Oyama Y, Jiang J, Samsonidze GG et al. 2005. Phys. Rev. B 72:153413 [Google Scholar]
  51. Araujo PT, Pesce PBC, Dresselhaus MS, Sato K, Saito R, Jorio A. 2010. Physica 42:(5)125161 [Google Scholar]
  52. Kane CL, Mele EJ. 2003. Phys. Rev. Lett 93:197402 [Google Scholar]
  53. Araujo PT, Jorio A, Dresselhaus MS, Sato K, Saito R. 2009. Phys. Rev. Lett 103:146802 [Google Scholar]
  54. Samsonidze GG, Saito R, Kobayashi N, Grüneis A, Jiang J et al. 2004. Appl. Phys. Lett 85:57035 [Google Scholar]
  55. Jiang J, Saito R, Sato K, Park JS, Samsonidze GG et al. 2007. Phys. Rev. B 75:035405 [Google Scholar]
  56. Jiang J, Saito R, Samsonidze GG, Jorio A, Chou SG et al. 2007. Phys. Rev. B 75:035407 [Google Scholar]
  57. Araujo PT, Maciel IO, Pesce PBC, Pimenta MA, Doorn SK et al. 2008. Phys. Rev. B 77:R241403 [Google Scholar]
  58. Ohno Y, Iwasaki S, Murakami Y, Kishimoto S, Maruyama S, Mizutan T. 2006. Phys. Rev. B 73:235427 [Google Scholar]
  59. Miyauchi Y, Saito R, Sato K, Ohno Y, Iwasaki S et al. 2007. Chem. Phys. Lett 442:39499 [Google Scholar]
  60. Saito R, Sato K, Araujo PT, Jorio A, Dresselhaus G, Dresselhaus MS. 2009. Phys. Status Solidi B 246:258185 [Google Scholar]
  61. Ando T. 1997. J. Phys. Soc. Jpn 66:106673 [Google Scholar]
  62. Perebeinos V, Tersoff J, Avouris P. 2004. Phys. Rev. Lett 92:257402 [Google Scholar]
  63. Paillet M, Poncharal P, Zahab A. 2006. Phys. Rev. Lett 96:039704 [Google Scholar]
  64. Samsonidze GG, Saito R, Jorio A, Souza Filho AG, Grüneis A et al. 2003. Phys. Rev. Lett 90:027403 [Google Scholar]
  65. Maciel IO, Anderson N, Pimenta MA, Hartschuh A, Qian H et al. 2008. Nat. Mater 7:87883 [Google Scholar]
  66. Ando T. 2010. J. Phys. Soc. Jpn. 79:024707 [Google Scholar]
  67. Sasaki K, Farhat H, Saito R, Dresselhaus MS. 2010. Physica E 42:2005 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-070909-103919
Loading
/content/journals/10.1146/annurev-conmatphys-070909-103919
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error