1932

Abstract

This article discusses the econometric model of causal policy analysis and two alternative frameworks that are popular in statistics and computer science. By employing the alternative frameworks uncritically, economists ignore the substantial advantages of an econometric approach, and this results in less informative analyses of economic policy. We show that the econometric approach to causality enables economists to characterize and analyze a wider range of policy problems than is allowed by alternative approaches.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: The Econometric Model for Causal Policy Analysis
Loading

Article metrics loading...

/content/journals/10.1146/annurev-economics-051520-015456
2022-08-12
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/economics/14/1/annurev-economics-051520-015456.html?itemId=/content/journals/10.1146/annurev-economics-051520-015456&mimeType=html&fmt=ahah

Literature Cited

  1. Aakvik A, Heckman JJ, Vytlacil EJ. 1999. Training effects on employment when the training effects are heterogeneous: an application to Norwegian vocational rehabilitation programs Work. Pap. 0599 Univ. Bergen Bergen, Nor:.
    [Google Scholar]
  2. Aakvik A, Heckman JJ, Vytlacil EJ. 2005. Estimating treatment effects for discrete outcomes when responses to treatment vary: an application to Norwegian vocational rehabilitation programs. J. Econom. 125:1–215–51
    [Google Scholar]
  3. Abadie A. 2005. Semiparametric difference-in-differences estimators. Rev. Econ. Stud. 72:11–19
    [Google Scholar]
  4. Abbring JH, Heckman JJ. 2007. Econometric evaluation of social programs, part III: distributional treatment effects, dynamic treatment effects, dynamic discrete choice, and general equilibrium policy evaluation. See Heckman & Leamer 2007 5145–303
  5. Ahn H, Powell J. 1993. Semiparametric estimation of censored selection models with a nonparametric selection mechanism. J. Econom. 58:1–23–29
    [Google Scholar]
  6. Altonji JG, Matzkin RL. 2005. Cross section and panel data estimators for nonseparable models with endogenous regressors. Econometrica 73:41053–102
    [Google Scholar]
  7. Angrist JD, Imbens GW, Rubin D 1996. Identification of causal effects using instrumental variables. J. Am. Stat. Assoc. 91:434444–55
    [Google Scholar]
  8. Athey S, Imbens GW. 2006. Identification and inference in nonlinear difference-in-differences models. Econometrica 74:2431–97
    [Google Scholar]
  9. Balke AA, Pearl J. 1993. Nonparametric bounds on causal effects from partial compliance data. Tech. Rep. R-199 Univ. Calif. Los Angeles:
    [Google Scholar]
  10. Bareinboim E, Pearl J. 2016. Causal inference and the data-fusion problem. PNAS 113:277345–52
    [Google Scholar]
  11. Bertrand M, Duflo E, Mullainathan S. 2004. How much should we trust differences-in-differences estimates?. Q. J. Econ. 119:1249–75
    [Google Scholar]
  12. Blundell R, Duncan A, Meghir C. 1998. Estimating labor supply responses using tax reforms. Econometrica 66:4827–61
    [Google Scholar]
  13. Blundell R, Powell J 2003. Endogeneity in nonparametric and semiparametric regression models. Advances in Economics and Econometrics: Theory and Applications, Vol. 2 M Dewatripont, LP Hansen, SJ Turnovsky 312–57 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  14. Brinch CN, Mogstad M, Wiswall M. 2017. Beyond late with a discrete instrument. J. Political Econ. 125:4985–1039
    [Google Scholar]
  15. Buchinsky M, Pinto R. 2021. Using economic incentives to generate monotonicity criteria of IV models. Unpubl. Ms., Univ. Calif. Los Angeles:
    [Google Scholar]
  16. Carneiro P, Hansen K, Heckman JJ. 2001. Removing the veil of ignorance in assessing the distributional impacts of social policies. Swedish Econ. Policy Rev. 8:2273–301
    [Google Scholar]
  17. Carneiro P, Hansen K, Heckman JJ. 2003. Estimating distributions of treatment effects with an application to the returns to schooling and measurement of the effects of uncertainty on college choice. Int. Econ. Rev. 44:2361–422
    [Google Scholar]
  18. Cox DR. 1958. Planning of Experiments New York: Wiley
    [Google Scholar]
  19. Cunha F, Heckman JJ, Navarro S. 2005. Separating uncertainty from heterogeneity in life cycle earnings. Oxf. Econ. Pap. 57:2191–261
    [Google Scholar]
  20. Cunha F, Heckman JJ, Schennach SM. 2010. Estimating the technology of cognitive and noncognitive skill formation. Econometrica 78:3883–931
    [Google Scholar]
  21. Dawid AP. 1976. Properties of diagnostic data distributions. Biometrics 32:3647–58
    [Google Scholar]
  22. Duncan OD, Goldberger AS. 1973. Structural Equation Models in the Social Sciences New York: Seminar Press
    [Google Scholar]
  23. Fisher RA. 1935. The Design of Experiments London: Oliver & Boyd
    [Google Scholar]
  24. Frangakis CE, Rubin D. 2002. Principal stratification in causal inference. Biometrics 58:121–29
    [Google Scholar]
  25. Frisch R. 1930. A dynamic approach to economic theory: lectures by Ragnar Frisch at Yale University. Mimeogr. Frisch Arch., Dep. Econ., Univ. Oslo Oslo, Nor:.
    [Google Scholar]
  26. Frisch R. 1995 (1938. Autonomy of economic relations: statistical versus theoretical relations in economic macrodynamics. The Foundations of Econometric Analysis DF Hendry, MS Morgan 407–24 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  27. Glymour C, Scheines R, Spirtes P. 2014. Discovering Causal Structure: Artificial Intelligence, Philosophy of Science, and Statistical Modeling. New York: Academic
    [Google Scholar]
  28. Goldberger AS. 1972. Structural equation methods in the social sciences. Econometrica 40:6979–1001
    [Google Scholar]
  29. Greenland S, Pearl J, Robins J. 1999. Causal diagrams for epidemiologic research. Epidemiology 10:137–48
    [Google Scholar]
  30. Haavelmo T. 1943. The statistical implications of a system of simultaneous equations. Econometrica 11:11–12
    [Google Scholar]
  31. Heckman JJ. 1978. Dummy endogenous variables in a simultaneous equation system. Econometrica 46:4931–59
    [Google Scholar]
  32. Heckman JJ. 1979. Sample selection bias as a specification error. Econometrica 47:1153–62
    [Google Scholar]
  33. Heckman JJ. 2008a. Econometric causality. Int. Stat. Rev. 76:11–27
    [Google Scholar]
  34. Heckman JJ. 2008b. The principles underlying evaluation estimators with an application to matching. Ann. Econ. Stat. 91–92:9–73
    [Google Scholar]
  35. Heckman JJ, Ichimura H, Smith J, Todd PE. 1998. Characterizing selection bias using experimental data. Econometrica 66:51017–98
    [Google Scholar]
  36. Heckman JJ, LaLonde RJ, Smith JA 1999. The economics and econometrics of active labor market programs. Handbook of Labor Economics, Vol. 3A, ed. OC Ashenfelter, D Card 1865–2097 New York: North-Holland
    [Google Scholar]
  37. Heckman JJ, Leamer EE, eds. 2007. Handbook of Econometrics, Vol. 6B Amsterdam: Elsevier
    [Google Scholar]
  38. Heckman JJ, Navarro S. 2004. Using matching, instrumental variables, and control functions to estimate economic choice models. Rev. Econ. Stat. 86:130–57
    [Google Scholar]
  39. Heckman JJ, Pinto R. 2015. Causal analysis after Haavelmo. Econom. Theory 31:1115–51
    [Google Scholar]
  40. Heckman JJ, Pinto R. 2018. Unordered monotonicity. Econometrica 86:11–35
    [Google Scholar]
  41. Heckman JJ, Pinto R, Savelyev P. 2013. Understanding the mechanisms through which an influential early childhood program boosted adult outcomes. Am. Econ. Rev. 103:62052–86
    [Google Scholar]
  42. Heckman JJ, Robb R. 1985a. Alternative methods for evaluating the impact of interventions. Longitudinal Analysis of Labor Market Data, Vol. 10 JJ Heckman, BS Singer 156–245 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  43. Heckman JJ, Robb R. 1985b. Alternative methods for evaluating the impact of interventions: an overview. J. Econom. 30:1–2239–67
    [Google Scholar]
  44. Heckman JJ, Taber C 2008. The Roy model. New Palgrave Dictionary of Economics, Vol. 7 SN Durlauf, LE Blume 248–53 Basingstoke, UK: Palgrave Macmillan. , 2nd ed..
    [Google Scholar]
  45. Heckman JJ, Urzúa S, Vytlacil EJ. 2006. Understanding instrumental variables in models with essential heterogeneity. Rev. Econ. Stat. 88:3389–432
    [Google Scholar]
  46. Heckman JJ, Urzúa S, Vytlavil EJ. 2008. Instrumental variables in models with multiple outcomes: the general unordered case. Ann. Econ. Stat. 91–92 151–74
    [Google Scholar]
  47. Heckman JJ, Vytlacil EJ. 1999. Local instrumental variables and latent variable models for identifying and bounding treatment effects. PNAS 96:84730–34
    [Google Scholar]
  48. Heckman JJ, Vytlacil EJ. 2005. Structural equations, treatment effects and econometric policy evaluation. Econometrica 73:3669–738
    [Google Scholar]
  49. Heckman JJ, Vytlacil EJ. 2007a. Econometric evaluation of social programs, part I: causal models, structural models and econometric policy evaluation. See Heckman & Leamer 2007 4779–874
  50. Heckman JJ, Vytlacil EJ. 2007b. Econometric evaluation of social programs, part II: using the marginal treatment effect to organize alternative economic estimators to evaluate social programs, and to forecast their effects in new environments. See Heckman & Leamer 2007 4875–5143
  51. Holland PW. 1986. Statistics and causal inference. J. Am. Stat. Assoc. 81:396945–60
    [Google Scholar]
  52. Hoyer PO, Janzing D, Mooij JM, Peters J, Schölkopf B. 2009. Nonlinear causal discovery with additive noise models. Advances in Neural Information Processing Systems 21 D Koller, D Schuurmans, Y Bengio, L Bottou 689–96 San Diego, CA: NIPS
    [Google Scholar]
  53. Huang Y, Valtorta M. 2006. Pearl's calculus of intervention is complete. Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence217–24 Arlington, VA: AUAI Press
    [Google Scholar]
  54. Hurwicz L. 1962. On the structural form of interdependent systems. Logic, Methodology and Philosophy of Science E Nagel, P Suppes, A Tarski 232–39 Stanford, CA: Stanford Univ. Press
    [Google Scholar]
  55. Imbens GW. 2004. Nonparametric estimation of average treatment effects under exogeneity: a review. Rev. Econ. Stat. 86:14–29
    [Google Scholar]
  56. Imbens GW, Angrist JD. 1994. Identification and estimation of local average treatment effects. Econometrica 62:2467–75
    [Google Scholar]
  57. Imbens GW, Rubin DB. 2015. Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  58. Kiiveri H, Speed TP, Carlin JB. 1984. Recursive causal models. J. Aust. Math. Soc. Ser. A3630–52
    [Google Scholar]
  59. Lauritzen SL. 1996. Graphical Models Oxford, UK: Clarendon
    [Google Scholar]
  60. Lee S, Salanié B. 2018. Identifying effects of multivalued treatments. Econometrica 86:61939–63
    [Google Scholar]
  61. Lopez-Paz D, Nishihara R, Chintala S, Schölkopf B, Bottou L. 2017. Discovering causal signals in images. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition6979–89 New York: IEEE
    [Google Scholar]
  62. Matzkin RL. 1993. Nonparametric identification and estimation of polychotomous choice models. J. Econom. 58:1–2137–68
    [Google Scholar]
  63. Matzkin RL. 1994. Restrictions of economic theory in nonparametric methods. Handbook of Econometrics, Vol. 4 R Engle, D McFadden 2523–58 New York: North-Holland
    [Google Scholar]
  64. Matzkin RL. 2007. Nonparametric identification. See Heckman & Leamer 2007 5307–68
  65. Matzkin RL. 2008. Identification in nonparametric simultaneous equations models. Econometrica 76:5945–78
    [Google Scholar]
  66. Matzkin RL. 2013. Nonparametric identification of structural economic models. Annu. Rev. Econ. 5:457–86
    [Google Scholar]
  67. Matzkin RL. 2015. Estimation of nonparametric models with simultaneity. Econometrica 83:11–66
    [Google Scholar]
  68. Mogstad M, Santos A, Torgovitsky A. 2018. Using instrumental variables for inference about policy relevant treatment effects. Econometrica 86:51589–619
    [Google Scholar]
  69. Mogstad M, Torgovitsky A. 2018. Identification and extrapolation of causal effects with instrumental variables. Annu. Rev. Econ. 2:577–613
    [Google Scholar]
  70. Neyman J. 1923. Statistical problems in agricultural experiments. J. R. Stat. Soc. 2:Suppl.107–80
    [Google Scholar]
  71. Pearl J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference San Francisco, CA: Morgan Kaufmann
    [Google Scholar]
  72. Pearl J. 1993. Bayesian analysis in expert systems. Comment: graphical models, causality and intervention. Stat. Sci. 8:3266–69
    [Google Scholar]
  73. Pearl J. 1995. Causal diagrams for empirical research. Biometrika 82:4669–88
    [Google Scholar]
  74. Pearl J. 2009a. Causality: Models, Reasoning, and Inference New York: Cambridge Univ. Press. , 2nd ed..
    [Google Scholar]
  75. Pearl J. 2009b. Myth, confusion, and science in causal analysis. Tech. Rep., Dep. Stat., Univ. Calif. Los Angeles:
    [Google Scholar]
  76. Pearl J. 2012. The do-calculus revisited. arXiv:1210.4852 [cs.AI]
  77. Peters J, Jazzing D, Schölkopf B. 2017. Elements of Causal Inference: Foundations and Learning Algorithms Cambridge, MA: MIT Press
    [Google Scholar]
  78. Pinto R. 2016. Learning from noncompliance in social experiments: the case of moving to opportunity Unpubl. Ms., Dep. Econ., Univ. Chicago Chicago:
    [Google Scholar]
  79. Powell JL. 1994. Estimation of semiparametric models. Handbook of Econometrics, Vol. 4 R Engle, D McFadden 2443–521 Amsterdam: Elsevier
    [Google Scholar]
  80. Pratt JW, Schlaifer R. 1984. On the nature and discovery of structure. J. Am. Stat. Assoc. 79:3859–33
    [Google Scholar]
  81. Quandt RE. 1988. The Econometrics of Disequilibrium New York: Blackwell
    [Google Scholar]
  82. Robins J. 1986. A new approach to causal inference in mortality studies with a sustained exposure period: application to control of the healthy worker survivor effect. Math. Model. 7:9–121393–512
    [Google Scholar]
  83. Rosenbaum PR, Rubin DB. 1983. The central role of the propensity score in observational studies for causal effects. Biometrika 70:141–55
    [Google Scholar]
  84. Roy A. 1951. Some thoughts on the distribution of earnings. Oxf. Econ. Pap. 3:2135–46
    [Google Scholar]
  85. Rubin DB. 1974. Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66:5688–701
    [Google Scholar]
  86. Schennach SM. 2020. Mismeasured and unobserved variables. Handbook of Econometrics, Vol. 7A S Durlauf, L Hansen, J Heckman, R Matzkin 487–565 Amsterdam: Elsevier
    [Google Scholar]
  87. Shpitser I, Pearl J. 2006. Identification of joint interventional distributions in recursive semi-Markovian causal models. Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference1219–26 Menlo Park, CA: AAAI
    [Google Scholar]
  88. Shpitser I, Pearl J. 2009. Effects of treatment on the treated: identification and generalization. Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence514–21 Arlington, VA: AUAI Press
    [Google Scholar]
  89. Spiegler R. 2020. Behavioral implications of causal misperceptions. Annu. Rev. Econ. 12:81–106
    [Google Scholar]
  90. Tamer E. 2003. Incomplete simultaneous discrete response model with multiple equilibria. Rev. Econ. Stud. 70:1147–65
    [Google Scholar]
  91. Telser LG. 1964. Iterative estimation of a set of linear regression equations. J. Am. Stat. Assoc. 59:307845–62
    [Google Scholar]
  92. Theil H. 1953. Esimation and simultaneous correlation in complete equation systems. Mimeogr. Memo., Cent. Plan. Bur. The Hague, Neth:.
    [Google Scholar]
  93. Tikka S, Karvanen J. 2017. Simplifying probabilistic expressions in causal inference. J. Mach. Learn. Res. 18:11–30
    [Google Scholar]
  94. Vytlacil EJ. 2002. Independence, monotonicity, and latent index models: an equivalence result. Econometrica 70:1331–41
    [Google Scholar]
  95. Wooldridge JM. 2015. Control function methods in applied econometrics. J. Hum. Resour.50420–45
    [Google Scholar]
/content/journals/10.1146/annurev-economics-051520-015456
Loading
/content/journals/10.1146/annurev-economics-051520-015456
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error