1932

Abstract

With average temperature ranging from −20°C at the North Pole to 30°C at the Equator and with global warming expected to reach 1.4°C to 4.5°C by the year 2100, it is clear that climate change will have vastly different effects across the globe. Given the abundance of land in northern latitudes, if population and economic activity could freely move across space, the economic cost of global warming would be greatly reduced. However, spatial frictions are real: migrants face barriers, trade and transportation are costly, physical infrastructure is not footloose, and knowledge embedded in clusters of economic activity diffuses only imperfectly. Thus, the economic cost of climate change is intimately connected to these spatial frictions. Building on earlier integrated assessment models (IAMs) that largely ignored space, in the past decade there has been significant progress in developing dynamic spatial integrated assessment models (S-IAMs) aimed at providing a more realistic evaluation of the economic cost of climate change, both locally and globally. This review discusses this progress and provides a guide for future work in this area.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-economics-072123-044449
2024-08-22
2025-02-18
Loading full text...

Full text loading...

/deliver/fulltext/economics/16/1/annurev-economics-072123-044449.html?itemId=/content/journals/10.1146/annurev-economics-072123-044449&mimeType=html&fmt=ahah

Literature Cited

  1. Acemoglu D, Aghion P, Bursztyn L, Hemous D. 2012.. The environment and directed technical change. . Am. Econ. Rev. 102:(1):13166
    [Crossref] [Google Scholar]
  2. Acemoglu D, Akcigit U, Hanley D, Kerr W. 2016.. Transition to clean technology. . J. Political Econ. 124:(1):52104
    [Crossref] [Google Scholar]
  3. Adao R, Arkolakis C, Esposito F. 2019.. General equilibrium effects in space: theory and measurement. NBER Work. Pap. 25544
    [Google Scholar]
  4. Albouy D, Graf W, Kellogg R, Wolff H. 2016.. Climate amenities, climate change, and American quality of life. . J. Assoc. Environ. Resour. Econ. 3:(1):20546
    [Google Scholar]
  5. Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, et al. 2009.. Warming caused by cumulative carbon emissions towards the trillionth tonne. . Nature 458:(7242):116366
    [Crossref] [Google Scholar]
  6. Archer D. 2005.. Fate of fossil fuel CO2 in geological time. . J. Geophys. Res. 110::c09s05
    [Google Scholar]
  7. Arkolakis C, Walsh C. 2023.. Clean growth. Work. Pap. , Yale Univ., New Haven, CT:
    [Google Scholar]
  8. Balboni C. 2021.. In harm's way? Infrastructure investments and the persistence of coastal cities. Work. Pap. , Mass. Inst. Technol., Cambridge, MA:
    [Google Scholar]
  9. Barnett M, Brock W, Hansen LP. 2022.. Climate change uncertainty spillover in the macroeconomy. . NBER Macroecon. Annu. 36:(1):253320
    [Crossref] [Google Scholar]
  10. Barrage L, Nordhaus WD. 2023.. Policies, projections, and the social cost of carbon: results from the DICE-2023 model. NBER Work. Pap. 31112
    [Google Scholar]
  11. Barreca A, Clay K, Deschênes O, Greenstone M, Shapiro JS. 2015.. Convergence in adaptation to climate change: evidence from high temperatures and mortality, 1900–2004. . Am. Econ. Rev. 105:(5):24751
    [Crossref] [Google Scholar]
  12. Barreca A, Clay K, Deschênes O, Greenstone M, Shapiro JS. 2016.. Adapting to climate change: the remarkable decline in the US temperature-mortality relationship over the twentieth century. . J. Political Econ. 124:(1):10559
    [Crossref] [Google Scholar]
  13. Bilal A. 2023.. Solving heterogeneous agent models with the master equation. NBER Work. Pap. 31103
    [Google Scholar]
  14. Bilal A, Rossi-Hansberg E. 2023.. Anticipating climate change across the United States. NBER Work. Pap. 31323
    [Google Scholar]
  15. Brock WA, Hansen LP. 2019.. Wrestling with uncertainty in climate economic models. Becker Friedman Inst. Econ. Work. Pap. 2019‐71 , Becker Friedman Inst. Econ., Univ. Chicago, Chicago:
    [Google Scholar]
  16. Burke M, Emerick K. 2016.. Adaptation to climate change: evidence from US agriculture. . Am. Econ. J. Econ. Policy 8:(3):10640
    [Crossref] [Google Scholar]
  17. Burke M, Hsiang SM, Miguel E. 2015a.. Climate and conflict. . Annu. Rev. Econ. 7::577617
    [Crossref] [Google Scholar]
  18. Burke M, Hsiang SM, Miguel E. 2015b.. Global non-linear effect of temperature on economic production. . Nature 527:(7577):23539
    [Crossref] [Google Scholar]
  19. Burzyński M, de Melo J, Deuster C, Docquier F. 2022.. Climate change, inequality, and human migration. . J. Eur. Econ. Assoc. 20:(3):114597
    [Crossref] [Google Scholar]
  20. Caliendo L, Dvorkin M, Parro F. 2019.. Trade and Labor market dynamics: general equilibrium analysis of the China trade shock. . Econometrica 87:(3):741835
    [Crossref] [Google Scholar]
  21. Castro-Vincenzi J. 2022.. Climate hazards and resilience in the global car industry. Work. Pap. , Princeton Univ., Princeton, NJ:
    [Google Scholar]
  22. Comin D, Lashkari D, Mestieri M. 2021.. Structural change with long-run income and price effects. . Econometrica 89:(1):31174
    [Crossref] [Google Scholar]
  23. Conte B. 2023.. Climate change and migration: the case of Africa. BSE Work. Pap. 1411 , Barcelona Sch. Econ., Barcelona, Spain:
    [Google Scholar]
  24. Conte B, Desmet K, Nagy DK, Rossi-Hansberg E. 2021.. Local sectoral specialization in a warming world. . J. Econ. Geogr. 21:(4):493530
    [Crossref] [Google Scholar]
  25. Conte B, Desmet K, Rossi-Hansberg E. 2022.. On the geographic implications of carbon taxes. NBER Work. Pap. 30678
    [Google Scholar]
  26. Copeland BR, Shapiro JS, Taylor MS. 2022.. Globalization and the environment. . In Handbook of International Economics, Vol. 5, ed. G Gopinath, E Helpman, K Rogoff , pp. 61146. Amsterdam:: Elsevier
    [Google Scholar]
  27. Costinot A, Donaldson D, Smith C. 2016.. Evolving comparative advantage and the impact of climate change in agricultural markets: evidence from 1.7 million fields around the world. . J. Political Econ. 124:(1):20548
    [Crossref] [Google Scholar]
  28. Couttenier M, Marcoux J, Mayer T, Thoenig M. 2023.. The gravity of violence. Unpublished slides
    [Google Scholar]
  29. Cruz JL. 2023.. Global warming and labor market reallocation. Work. Pap. , Princeton Univ., Princeton, NJ:
    [Google Scholar]
  30. Cruz JL, Rossi-Hansberg E. 2024.. The geography of global warming. . Rev. Econ. Stud. 91:(2):899939
    [Crossref] [Google Scholar]
  31. D'Andrea WJ, Huang Y, Fritz SC, Anderson NJ. 2011.. Abrupt Holocene climate change as an important factor for human migration in West Greenland. . PNAS 108:(24):976569
    [Crossref] [Google Scholar]
  32. Dell M, Jones BF, Olken BA. 2012.. Temperature shocks and economic growth: evidence from the last half century. . Am. Econ. J. Macroecon. 4:(3):6695
    [Crossref] [Google Scholar]
  33. Dell M, Jones BF, Olken BA. 2014.. What do we learn from the weather? The new climate-economy literature. . J. Econ. Lit. 52:(3):74098
    [Crossref] [Google Scholar]
  34. Deschênes O, Greenstone M. 2011.. Climate change, mortality, and adaptation: evidence from annual fluctuations in weather in the US. . Am. Econ. J. Appl. Econ. 3:(4):15285
    [Crossref] [Google Scholar]
  35. Desmet K, Kopp RE, Kulp SA, Nagy DK, Oppenheimer M, et al. 2021.. Evaluating the economic cost of coastal flooding. . Am. Econ. J. Macroecon. 13:(2):44486
    [Crossref] [Google Scholar]
  36. Desmet K, Nagy DK, Rossi-Hansberg E. 2018.. The geography of development. . J. Political Econ. 126:(3):90383
    [Crossref] [Google Scholar]
  37. Desmet K, Rossi-Hansberg E. 2014.. Spatial development. . Am. Econ. Rev. 104:(4):121143
    [Crossref] [Google Scholar]
  38. Desmet K, Rossi-Hansberg E. 2015.. On the spatial economic impact of global warming. . J. Urban Econ. 88:(C):1637
    [Crossref] [Google Scholar]
  39. Dingel JI, Meng KC, Hsiang SM. 2019.. Spatial correlation, trade, and inequality: evidence from the global climate. NBER Work. Pap. 25447
    [Google Scholar]
  40. Eaton J, Kortum S. 2002.. Technology, geography, and trade. . Econometrica 70:(5):174179
    [Crossref] [Google Scholar]
  41. Fagan B. 2009.. The Great Warming: Climate Change and the Rise and Fall of Civilizations. New York:: Bloomsbury
    [Google Scholar]
  42. Farrokhi F, Lashkaripour A. 2022.. Can trade policy mitigate climate change? STEG Work. Pap. 34 , Struct. Transform. Econ. Growth, London:
    [Google Scholar]
  43. Feng S, Krueger AB, Oppenheimer M. 2011.. Linkages among climate change, crop yields and Mexico–US cross-border migration. . PNAS 107:(32):1425762
    [Crossref] [Google Scholar]
  44. Folini D, Friedl A, Kübler F, Scheidegger S. 2024.. The climate in climate economics. . Rev. Econ. Stud. In press. https://doi.org/10.1093/restud/rdae011
    [Google Scholar]
  45. Golosov M, Hassler J, Krusell P, Tsyvinski A. 2014.. Optimal taxes on fossil fuel in general equilibrium. . Econometrica 82:(1):4188
    [Crossref] [Google Scholar]
  46. Hallegatte S, Shah A, Lempert R, Brown C, Gill S. 2012.. Investment decision making under deep uncertainty—application to climate change. Policy Res. Work. Pap. Ser. 6193 , World Bank, Washington, DC:
    [Google Scholar]
  47. Hansen LP, Sargent TJ. 2022.. Risk, ambiguity, and misspecification: decision theory, robust control, and statistics. Becker Friedman Inst. Econ. Work. Pap. 2022‐157 , Becker Friedman Inst. Econ., Univ. Chicago, Chicago:
    [Google Scholar]
  48. Hassler J, Krusell P. 2012.. Economics and climate change: integrated assessment in a multi-region world. . J. Eur. Econ. Assoc. 10:(5):9741000
    [Crossref] [Google Scholar]
  49. Henderson JV, Jang BY, Storeygard A, Weil DN. 2023.. Climate change, population growth, and population pressure. Work. Pap. , Brown Univ., Providence, RI:
    [Google Scholar]
  50. Hornbeck R. 2012.. The enduring impact of the American dust bowl: short- and long-run adjustments to environmental catastrophe. . Am. Econ. Rev. 102:(4):1477507
    [Crossref] [Google Scholar]
  51. Hsiang S, Kopp R, Jina A, Rising J, Delgado M, et al. 2017.. Estimating economic damage from climate change in the United States. . Science 356:(6345):136269
    [Crossref] [Google Scholar]
  52. Hultgren A, Carleton T, Delgado M, Gergel DR, Greenstone M, et al. 2022.. Estimating global impacts to agriculture from climate change accounting for adaptation. Unpublished manuscript
    [Google Scholar]
  53. IIASA (Int. Inst. Appl. Syst. Anal.), FAO (Food Agric. Organ.). 2012.. Global Agro-Ecological Zones (GAEZ v3.0). Data , FAO, Rome, Italy:
    [Google Scholar]
  54. IPCC (Intergov. Panel Clim. Change). 2013.. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  55. IPCC (Intergov. Panel Clim. Change). 2020.. Data distribution centre. Data , IPCC, Geneva, Switz.: https://www.ipcc-data.org/
    [Google Scholar]
  56. IPCC (Intergov. Panel Clim. Change). 2021.. Summary for policymakers. . In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. V Masson-Delmotte, P Zhai, A Pirani, S Connors, C Péan , et al. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  57. Jagnani M, Barrett CB, Liu Y, You L. 2021.. Within-season producer response to warmer temperatures: defensive investments by Kenyan farmers. . Econ. J. 131:(633):392419
    [Crossref] [Google Scholar]
  58. Jia R, Ma X, Xie VW. 2022.. Expecting floods: firm entry, employment, and aggregate implications. NBER Work. Pap. 30250
    [Google Scholar]
  59. Joos F, Roth R, Fuglestvedt J, Peters G, Enting I, et al. 2013.. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. . Athmos. Chem. Phys. 13::2793825
    [Crossref] [Google Scholar]
  60. Kahn ME. 2021.. Adapting to Climate Change: Markets and the Management of an Uncertain Future. New Haven, CT:: Yale Univ. Press
    [Google Scholar]
  61. Kleinman B, Liu E, Redding SJ, Yogo M. 2023.. Neoclassical growth in an interdependent world. Work. Pap. 2023-02 , Econ. Dep., Princeton Univ., Princeton, NJ:
    [Google Scholar]
  62. Kopp R, Horton R, Little C, Mitrovica J, Oppenheimer M, et al. 2014.. Probabilistic 21st and 22nd century sea-level projections at a global network of tide gauge sites. . Earth's Future 2:(8):383406
    [Crossref] [Google Scholar]
  63. Kortum S, Weisbach DA. 2021.. Optimal unilateral carbon policy. CESifo Work. Pap. Ser. 9409 , CESifo, Munich, Ger.:
    [Google Scholar]
  64. Kotlikoff LJ, Kubler F, Polbin A, Scheidegger S. 2021.. Can today's and tomorrow's world uniformly gain from carbon taxation? NBER Work. Pap. 29224
    [Google Scholar]
  65. Krusell P, Smith AA. 2022.. Climate change around the world. NBER Work. Pap. 30338
    [Google Scholar]
  66. Matthews HD, Gillett NP, Stott PA, Zickfeld K. 2009.. The proportionality of global warming to cumulative carbon emissions. . Nature 459:(7248):82932
    [Crossref] [Google Scholar]
  67. Michaels G, Lin Y, McDermott T. 2021.. Cities and the sea level. CEPR Discuss. Pap. 16004 , Cent. Econ. Policy Res., London:
    [Google Scholar]
  68. Missirian A, Schlenker W. 2017.. Asylum applications respond to temperature fluctuations. . Science 358:(6370):161014
    [Crossref] [Google Scholar]
  69. Mitchell T. 2003.. Pattern scaling: an examination of the accuracy of the technique for describing future climates. . Clim. Change 60::21742
    [Crossref] [Google Scholar]
  70. Monte F, Redding S, Rossi-Hansberg E. 2018.. Commuting, migration, and local employment elasticities. . Am. Econ. Rev. 108:(12):385590
    [Crossref] [Google Scholar]
  71. Nath IB. 2020.. The food problem and the aggregate productivity consequences of climate change. NBER Work. Pap. 27297
    [Google Scholar]
  72. Nath IB, Ramey VA, Klenow PJ. 2023.. How much will global warming cool global growth? Unpublished manuscript
    [Google Scholar]
  73. Nordhaus WD. 1993.. Rolling the “DICE”: an optimal transition path for controlling greenhouse gases. . Resour. Energy Econ. 15:(1):2750
    [Crossref] [Google Scholar]
  74. Nordhaus WD. 2008.. A Question of Balance: Weighing the Options on Global Warming Policies. New Haven, CT:: Yale Univ. Press
    [Google Scholar]
  75. Nordhaus WD. 2010.. Economic aspects of global warming in a post-Copenhagen environment. . PNAS 107:(26):1172126
    [Crossref] [Google Scholar]
  76. Nordhaus WD. 2015.. Climate clubs: overcoming free-riding in international climate policy. . Am. Econ. Rev. 105:(4):133970
    [Crossref] [Google Scholar]
  77. Ortega F, Peri G. 2013.. The effect of income and immigration policies on international migration. . Migrat. Stud. 1:(1):4774
    [Crossref] [Google Scholar]
  78. Ranson M. 2014.. Crime, weather, and climate change. . J. Environ. Econ. Manag. 67:(3):274302
    [Crossref] [Google Scholar]
  79. Redding SJ, Rossi-Hansberg E. 2017.. Quantitative spatial economics. . Annu. Rev. Econ. 9::2158
    [Crossref] [Google Scholar]
  80. Roback J. 1982.. Wages, rents, and the quality of life. . J. Political Econ. 90:(6):125778
    [Crossref] [Google Scholar]
  81. Rosen S. 1979.. Wages-based indexes of urban quality of life. . In Current Issues in Urban Economics, ed. P Mieszkowski, M Straszheim , pp. 74104. Baltimore, MD:: Johns Hopkins Univ. Press
    [Google Scholar]
  82. Rosenzweig C, Parry ML. 1994.. Potential impact of climate change on world food supply. . Nature 367::13338
    [Crossref] [Google Scholar]
  83. Rudik I, Lyn G, Tan W, Ortiz-Bobea A. 2022.. The economic effects of climate change in dynamic spatial equilibrium. Conf. Pap. 333486, Cent. Glob. Trade Anal. , Purdue Univ., West Lafayette, IN:
    [Google Scholar]
  84. Schlenker W, Roberts MJ. 2009.. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. . PNAS 106:(37):1559498
    [Crossref] [Google Scholar]
  85. Shapiro JS. 2021.. The environmental bias of trade policy. . Q. J. Econ. 136:(2):83186
    [Crossref] [Google Scholar]
  86. Somanathan E, Somanathan R, Sudarshan A, Tewari M. 2021.. The impact of temperature on productivity and labor supply: evidence from Indian manufacturing. . J. Political Econ. 129:(6):1797827
    [Crossref] [Google Scholar]
  87. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, et al. 2011.. The representative concentration pathways: an overview. . Clim. Change 109:(1):5
    [Crossref] [Google Scholar]
  88. Waldinger M. 2022.. The economic effects of long-term climate change: evidence from the Little Ice Age. . J. Political Econ. 130:(9):2275314
    [Crossref] [Google Scholar]
  89. Warner K, Ehrhart C, de Sherbinin A, Adamo SB, Chai-Onn T. 2009.. Mapping the effects of climate change on human migration and displacement. Rep., Cent. Int. Earth Sci. Inform. Netw. , Earth Inst., Columbia Univ., New York:
    [Google Scholar]
  90. Weill J. 2022.. Perilous flood risk assessments. Work. Pap. , Univ. Calif., Berkeley:
    [Google Scholar]
  91. Wilson DJ. 2019.. Clearing the fog: the predictive power of weather for employment reports and their asset price responses. . Am. Econ. Rev. Insights 1:(3):37388
    [Crossref] [Google Scholar]
  92. Zhang P, Deschenes O, Meng K, Zhang J. 2018.. Temperature effects on productivity and factor reallocation: evidence from a half million Chinese manufacturing plants. . J. Environ. Econ. Manag. 88::117
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-economics-072123-044449
Loading
/content/journals/10.1146/annurev-economics-072123-044449
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error