1932

Abstract

This article reviews recent advances in estimation and inference for nonparametric and semiparametric models with endogeneity. It first describes methods of sieves and penalization for estimating unknown functions identified via conditional moment restrictions. Examples include nonparametric instrumental variables (NPIV) regression, nonparametric quantile IV regression, and many more semi/nonparametric structural models. Asymptotic properties of the sieve estimators and the sieve Wald, quasi-likelihood ratio hypothesis tests of functionals with nonparametric endogeneity are presented. For sieve NPIV estimation, the rate-adaptive data-driven choices of sieve regularization parameters and the sieve score bootstrap uniform confidence bands are described. Finally, simple sieve variance estimation and overidentification tests for the semiparametric two-step generalized method of moments are reviewed. Monte Carlo examples are also included.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-economics-080213-041155
2016-10-31
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/economics/8/1/annurev-economics-080213-041155.html?itemId=/content/journals/10.1146/annurev-economics-080213-041155&mimeType=html&fmt=ahah

Literature Cited

  1. Ackerberg D, Caves K, Frazer G. 2015. Identification properties of recent production function estimators. Econometrica 83:2411–51 [Google Scholar]
  2. Ackerberg D, Chen X, Hahn J. 2012. A practical asymptotic variance estimator for two-step semiparametric estimators. Rev. Econ. Stat. 94:482–98 [Google Scholar]
  3. Ackerberg D, Chen X, Hahn J, Liao Z. 2014. Asymptotic efficiency of semiparametric two-step GMM. Rev. Econ. Stud. 81:919–43 [Google Scholar]
  4. Ai C, Chen X. 1999. A kernel estimation of semiparametric conditional moment restriction models with different conditioning variables for different equations Work. Pap., Univ. Florida, Gainesville, and London School Econ. [Google Scholar]
  5. Ai C, Chen X. 2003. Efficient estimation of conditional moment restrictions models containing unknown functions. Econometrica 71:1795–843 [Google Scholar]
  6. Ai C, Chen X. 2007. Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables. J. Econom. 141:5–43 [Google Scholar]
  7. Ai C, Chen X. 2012. The semiparametric efficiency bound for models of sequential moment restrictions containing unknown functions. J. Econom. 170:442–57 [Google Scholar]
  8. Anastassiou G, Yu X. 1992a. Convex and convex-probabilistic wavelet approximation. Stoch. Anal. Appl. 10:507–21 [Google Scholar]
  9. Anastassiou G, Yu X. 1992b. Monotone and probabilistic wavelet approximation. Stoch. Anal. Appl. 10:251–64 [Google Scholar]
  10. Andrews D. 1994. Asymptotics for semi-parametric econometric models via stochastic equicontinuity. Econometrica 62:43–72 [Google Scholar]
  11. Arcidiacono P, Miller R. 2011. Conditional choice probability estimation of dynamic discrete choice models with unobserved heterogeneity. Econometrica 79:1823–68 [Google Scholar]
  12. Bajari P, Hong H, Nekipelov D. 2011. Game theory and econometrics. A survey of some recent research. Work. Pap., Stanford Univ. and Univ. Calif., Berkeley [Google Scholar]
  13. Berry S, Haile P. 2014. Identification in differentiated products markets using market level data. Econometrica 82:1749–97 [Google Scholar]
  14. Blundell R, Chen X, Kristensen D. 2007. Semi-nonparametric IV estimation of shape invariant Engel curves. Econometrica 75:1613–69 [Google Scholar]
  15. Blundell R, Horowitz J, Parey M. 2012. Measuring the price responsiveness of gasoline demand: economic shape restrictions and nonparametric demand estimation. Quant. Econ. 3:29–51 [Google Scholar]
  16. Blundell R, Horowitz J, Parey M. 2015. Nonparametric estimation of a heterogeneous demand function under Slutsky inequality restriction Work. Pap. CWP54/13, Inst. Fisc. Stud., London [Google Scholar]
  17. Blundell R, Kristensen D, Matzkin R. 2013. Control functions and simultaneous equation methods. Am. Econ. Rev. 103:563–69 [Google Scholar]
  18. Blundell R, Matzkin R. 2014. Conditions for the existence of control functions in nonseparable simultaneous equations models. Quant. Econ. 5:271–95 [Google Scholar]
  19. Blundell R, Powell JL. 2003. Endogeneity in nonparametric and semiparametric regression models. Advances in Economics and Econometrics: Theory and Applications, Eighth World Congress 2 M Dewatripont, LP Hansen, SJ Turnovsky 312–57 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  20. Bontemps C, Martimort D. 2013. Identification and estimation of incentive contracts under asymmetric information: an application to the French water sector Work. Pap., Toulouse School Econ. [Google Scholar]
  21. Breunig C. 2015a. Goodness-of-fit tests based on series estimators in nonparametric instrumental regression. J. Econom. 184:328–46 [Google Scholar]
  22. Breunig C. 2015b. Specification testing in nonparametric instrumental quantile regression Work. Pap., Humboldt Univ., Berlin [Google Scholar]
  23. Breunig C, Johannes J. 2016. Adaptive estimation of functionals in nonparametric instrumental regression. Econom. Theory 32:612–54 [Google Scholar]
  24. Carrasco M, Florens J-P, Renault E. 2007. Linear inverse problems in structural econometrics estimation based on spectral decomposition and regularization. Handbook of Econometrics 6B JJ Heckman, EE Leamer 5633–751 Amsterdam: North-Holland [Google Scholar]
  25. Chamberlain G. 1992a. Comment: sequential moment restrictions in panel data. J. Bus. Econ. Stat. 10:20–26 [Google Scholar]
  26. Chamberlain G. 1992b. Efficiency bounds for semiparametric regression. Econometrica 60:567–96 [Google Scholar]
  27. Chang J, Chen XS, Chen X. 2015. High dimensional generalized empirical likelihood or moment restrictions with dependent data. J. Econom. 185:283–304 [Google Scholar]
  28. Chen X. 2007. Large sample sieve estimation of semi-nonparametric models. Handbook of Econometrics 6B JJ Heckman, EE Leamer 5549–632 Amsterdam: North-Holland [Google Scholar]
  29. Chen X. 2013. Penalized sieve estimation and inference of semi-nonparametric dynamic models: a selective review. Advances in Economics and Econometrics: Tenth World Congress 3 Econometrics D Acemoglu, M Arellano, E Dekel 485–544 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  30. Chen X, Chernozhukov V, Lee S, Newey W. 2014a. Local identification of nonparametric and semiparametric models. Econometrica 82:785–809 [Google Scholar]
  31. Chen X, Christensen T. 2015. Optimal sup-norm rates, adaptivity and inference in nonparametric instrumental variable estimation Discuss. Pap. 1923R, Cowles Found., Yale Univ., New Haven, CT [Google Scholar]
  32. Chen X, Favilukis J, Ludvigson S. 2013. An estimation of economic models with recursive preferences. Quant. Econ. 4:39–83 [Google Scholar]
  33. Chen X, Liao Z. 2015. Sieve semiparametric two-step GMM under weak dependence. J. Econom. 189:163–86 [Google Scholar]
  34. Chen X, Liao Z, Sun Y. 2014b. Sieve inference on semi-nonparametric time series models. J. Econom. 178:639–58 [Google Scholar]
  35. Chen X, Linton O, van Keilegom I. 2003. Estimation of semiparametric models when the criterion function is not smooth. Econometrica 71:1591–608 [Google Scholar]
  36. Chen X, Ludvigson S. 2009. Land of addicts? An empirical investigation of habit-based asset pricing models. J. Appl. Econom. 24:1057–93 [Google Scholar]
  37. Chen X, Pouzo D. 2009. Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals. J. Econom. 152:46–60 [Google Scholar]
  38. Chen X, Pouzo D. 2012. Estimation of nonparametric conditional moment models with possible nonsmooth generalized residuals. Econometrica 80:277–321 [Google Scholar]
  39. Chen X, Pouzo D. 2015. Sieve quasi likelihood ratio inference on semi/nonparametric conditional moment models. Econometrica 83:1013–79 [Google Scholar]
  40. Chen X, Reiss M. 2011. On rate optimality for ill-posed inverse problems in econometrics. Econom. Theory 27:497–521 [Google Scholar]
  41. Chen X, Santos A. 2015. Overidentification in regular models Discuss. Pap. d1999, Cowles Found., Yale Univ., New Haven, CT [Google Scholar]
  42. Chen X, Shen X. 1998. Sieve extremum estimates for weakly dependent data. Econometrica 66:289–314 [Google Scholar]
  43. Chernozhukov V, Hansen C. 2005. An IV model of quantile treatment effects. Econometrica 73:245–61 [Google Scholar]
  44. Chernozhukov V, Hansen C. 2013. Quantile models with endogeneity. Annu. Rev. Econ. 5:57–81 [Google Scholar]
  45. Chernozhukov V, Imbens GW, Newey WK. 2007. Instrumental variable estimation of nonseparable models. J. Econom. 139:4–14 [Google Scholar]
  46. Chernozhukov V, Newey W, Santos A. 2015. Constrained conditional moment restriction models Work. Pap., Mass. Inst. Technol., Cambridge, MA [Google Scholar]
  47. Chesher A. 2003. Identification in nonseparable models. Econometrica 77:1405–41 [Google Scholar]
  48. Chetverikov D, Wilhelm W. 2015. Nonparametric instrumental variable estimation under monotonicity Work. Pap., Univ. Calif., Los Angeles [Google Scholar]
  49. Chui C. 1992. An Introduction to Wavelets San Diego: Academic [Google Scholar]
  50. Conley T, Dupor W. 2003. A spatial analysis of sectoral complementarity. J. Polit. Econ. 111:311–52 [Google Scholar]
  51. Darolles S, Fan Y, Florens J-P, Renault E. 2011. Nonparametric instrumental regression. Econometrica 79:1541–66 [Google Scholar]
  52. De Loecker, Goldberg P, Khandelwal A, Pavcnik N. 2016. Prices, markups and trade reform. Econometrica 84:445–510 [Google Scholar]
  53. Dechevsky L, Penev S. 1997. On shape-preserving probabilistic wavelet approximators. Stoch. Anal. Appl. 15:187–215 [Google Scholar]
  54. DeVore RA. 1977a. Monotone approximation by polynomials. SIAM J. Math. Anal. 8:906–21 [Google Scholar]
  55. DeVore RA. 1977b. Monotone approximation by splines. SIAM J. Math. Anal. 8:891–905 [Google Scholar]
  56. DeVore RA, Lorentz GG. 1993. Constructive Approximation Berlin: Springer-Verlag [Google Scholar]
  57. Donald S, Imbens GW, Newey WK. 2003. Empirical likelihood estimation and consistent tests with conditional moment restrictions. J. Econom. 117:55–93 [Google Scholar]
  58. Engle R, Gonzalez-Rivera G. 1991. Semiparametric ARCH models. J. Bus. Econ. Stat. 9:345–59 [Google Scholar]
  59. Engle R, Rangel JG. 2008. The Spline-GARCH model for low-frequency volatility and its global macroeconomic causes. Rev. Financ. Stud. 21:1187–222 [Google Scholar]
  60. Fan J, Gijbels I. 1996. Local Polynomial Modelling and Its Applications London: Chapman & Hall [Google Scholar]
  61. Florens JP, Heckman J, Meghir C, Vytlacil E. 2008. Identification of treatment effects using control functions in models with continuous endogenous treatment and heterogeneous effects. Econometrica 76:1191–206 [Google Scholar]
  62. Florens J-P, Johannes J, Van Bellegem S. 2012. Instrumental regression in partially linear models. Econom. J. 15:304–24 [Google Scholar]
  63. Florens JP, Simoni A. 2012. Nonparametric estimation of an instrumental regression: a quasi-Bayesian approach based on regularized posterior. J. Econom. 170:458–75 [Google Scholar]
  64. Freyberger J, Horowitz J. 2013. Identification and shape restrictions in nonparametric instrumental variables estimation Work. Pap. CWP31/13, Inst. Fisc. Stud., London [Google Scholar]
  65. Gagliardini P, Scaillet O. 2012. Semiparametric estimation of conditional constrained heterogenous processes: asset pricing applications. Econometrica 80:1533–62 [Google Scholar]
  66. Gallant AR, Hansen LP, Tauchen G. 1990. Using conditional moments of asset payoffs to infer the volatility of intertemporal marginal rates of substitution. J. Econom. 45:141–79 [Google Scholar]
  67. Gallant AR, Tauchen G. 1989. Semiparametric estimation of conditional constrained heterogenous processes: asset pricing applications. Econometrica 57:1091–120 [Google Scholar]
  68. Gandhi A, Navarro S, Rivers D. 2016. On the identification of production functions: How heterogeneous is productivity? Work. Pap., Univ. Wisconsin–Madison [Google Scholar]
  69. Grasmair M, Scherzer O, Vanhems A. 2013. Nonparametric instrumental regression with non-convex constraints. Inverse Probl. 29:035006 [Google Scholar]
  70. Grenander U. 1981. Abstract Inference New York: Wiley [Google Scholar]
  71. Groeneboom P, Jongbloed G. 2014. Nonparametric Estimation Under Shape Constraints Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  72. Hahn J, Ridder G. 2013. Asymptotic variance of semiparametric estimators with generated regressors. Econometrica 81:315–40 [Google Scholar]
  73. Hall P, Horowitz J. 2005. Nonparametric methods for inference in the presence of instrumental variables. Ann. Stat. 33:2904–29 [Google Scholar]
  74. Han Q, Wellner J. 2016. Multivariate convex regression: global risk bounds and adaptation. arXiv:1601.06844 [math.ST]
  75. Hansen LP. 1982. Large sample properties of generalized method of moments estimators. Econometrica 50:1029–54 [Google Scholar]
  76. Hansen LP. 2014. Nobel lecture: uncertainty outside and inside economic models. J. Polit. Econ. 122:945–87 [Google Scholar]
  77. Hausman J. 1987. Specification and estimation of simultaneous equation models. Handbook of Econometrics 1 Z Griliches, MD Intriligator 391–448 Amsterdam: North-Holland [Google Scholar]
  78. Heckman JJ. 1979. Sample selection bias as a specification error. Econometrica 47:153–61 [Google Scholar]
  79. Heckman JJ, Robb R. 1985. Alternative methods for evaluating the impact of interventions: an overview. J. Econom. 30:239–67 [Google Scholar]
  80. Hong S. 2012. Inference in semiparametric conditional moment models with partial identification Work. Pap., Tsinghua Univ., Beijing [Google Scholar]
  81. Horowitz J. 2006. Testing a parametric model against a nonparametric alterative with identification through instrumental variables. Econometrica 74:521–38 [Google Scholar]
  82. Horowitz J. 2011. Applied nonparametric instrumental variables estimation. Econometrica 79:347–94 [Google Scholar]
  83. Horowitz J. 2013. Ill-posed inverse problems in economics. Annu. Rev. Econ. 6:21–51 [Google Scholar]
  84. Horowitz J. 2014. Adaptive nonparametric instrumental variables estimation: empirical choice of the regularization parameter. J. Econom. 180:158–73 [Google Scholar]
  85. Horowitz J, Lee S. 2007. Nonparametric instrumental variables estimation of a quantile regression model. Econometrica 75:1191–208 [Google Scholar]
  86. Horowitz J, Lee S. 2012. Uniform confidence bands for functions estimated nonparametrically with instrumental variables. J. Econom. 168:175–88 [Google Scholar]
  87. Ichimura H. 1993. Semiparametric least squares (SLS) and weighted SLS estimation of single index models. J. Econom. 58:71–120 [Google Scholar]
  88. Imbens G. 2002. Generalized method of moments and empirical likelihood. J. Bus. Econ. Stat. 20:493–506 [Google Scholar]
  89. Imbens G, Newey W. 2009. Identification and estimation of triangular simultaneous equations models without additivity. Econometrica 77:1481–512 [Google Scholar]
  90. Kato K. 2013. Quasi-Bayesian analysis of nonparametric instrumental variables model. Ann. Stat. 41:2359–90 [Google Scholar]
  91. Kawai K. 2011. Auction design and the incentives to invest: evidence from procurement auctions Work. Pap., NYU Stern School Bus., New York Univ. [Google Scholar]
  92. Kitamura Y. 2007. Empirical likelihood methods in econometrics: theory and practice. Advances in Economics and Econometrics: Ninth World Congress of the Econometric Society R Blundell, WK Newey, T Personn 174–237 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  93. Lepskii OV. 1990. On a problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl. 35:454–66 [Google Scholar]
  94. Liao Y, Jiang W. 2011. Posterior consistency of nonparametric conditional moment restricted models. Ann. Stat. 39:3003–31 [Google Scholar]
  95. Mammen E. 1993. Bootstrap and wild bootstrap for high dimensional linear models. Ann. Stat. 21:255–85 [Google Scholar]
  96. Mammen E, Rothe C, Schienle M. 2012. Nonparametric regression with nonparametrically generated covariates. Ann. Stat. 40:1132–70 [Google Scholar]
  97. Mammen E, Rothe C, Schienle M. 2016. Semiparametric estimation with generated covariates. Econom. Theory. In press [Google Scholar]
  98. Matzkin RL. 1994. Restrictions of economic theory in nonparametric methods. Handbook of Econometrics 4 RF Engle III, DF McFadden 5307–68 Amsterdam: North-Holland [Google Scholar]
  99. Matzkin RL. 2007. Nonparametric identification. Handbook of Econometrics 6B JJ Heckman, EE Leamer 2523–58 Amsterdam: North-Holland [Google Scholar]
  100. Matzkin RL. 2013. Nonparametric identification in structural economic models. Annu. Rev. Econ. 5:457–86 [Google Scholar]
  101. Merlo A, De Paula A. 2015. Identification and estimation of voter preferences Work. Pap. CWP50/15, Inst. Fisc. Stud. [Google Scholar]
  102. Meyer M. 2008. Inference using shape-restricted regression splines. Ann. Appl. Stat. 2:1013–33 [Google Scholar]
  103. Nevo A. 2011. Empirical models of consumer behavior. Annu. Rev. Econ. 3:51–75 [Google Scholar]
  104. Newey WK. 1994. The asymptotic variance of semiparametric estimators. Econometrica 62:1349–82 [Google Scholar]
  105. Newey WK. 1997. Convergence rates and asymptotic normality for series estimators. J. Econom. 79:147–68 [Google Scholar]
  106. Newey WK, Powell JL. 2003. Instrumental variable estimation of nonparametric models. Econometrica 71:1565–78 [Google Scholar]
  107. Newey WK, Powell JL, Vella F. 1999. Nonparametric estimation of triangular simultaneous equations models. Econometrica 67:565–603 [Google Scholar]
  108. Olley S, Pakes A. 1996. The dynamics of productivity in the telecommunications equipment industry. Econometrica 65:1263–97 [Google Scholar]
  109. Otsu T. 2011. Empirical likelihood estimation of conditional moment restriction models with unknown functions. Econom. Theory 27:8–46 [Google Scholar]
  110. Pakes A, Olley S. 1995. A limit theorem for a smooth class of semiparametric estimators. J. Econom. 65:295–332 [Google Scholar]
  111. Parente P, Smith R. 2014. Recent developments in empirical likelihood and related methods. Annu. Rev. Econ. 6:77–102 [Google Scholar]
  112. Pinkse J, Slade ME, Bret C. 2002. Spatial price competition: a semiparametric approach. Econometrica 70:1111–53 [Google Scholar]
  113. Pouzo D. 2015. Bootstrap consistency for quadratic forms of sample averages with increasing dimension. Electron. J. Stat. 9:3046–97 [Google Scholar]
  114. Robinson P. 1988. Root-N-consistent semiparametric regression. Econometrica 56:931–54 [Google Scholar]
  115. Santos A. 2012. Inference in nonparametric instrumental variables with partial identification. Econometrica 80:213–75 [Google Scholar]
  116. Smith R. 1997. Alternative semi-parametric likelihood approaches to generalized method of moments estimation. Econ. J. 107:509–19 [Google Scholar]
  117. Sueishi N. 2014. Efficient estimation via conditional moment restrictions containing unknown functions Work. Pap., Kyoto Univ. [Google Scholar]
  118. Tao J. 2015. Inference for point and partially identified semi-nonparametric conditional moment models Work. Pap., Univ. Washington, Seattle [Google Scholar]
  119. Vanhems A. 2010. Non-parametric estimation of exact consumer surplus with endogeneity in price. Econom. J. 13:S80–98 [Google Scholar]
  120. Wang J, Ghosh SK. 2012. Shape restricted nonparametric regression with Berstein polynomials. Comput. Stat. Data Anal. 56:2729–41 [Google Scholar]
  121. Wooldridge J. 2002. Econometric Analysis of Cross Section and Panel Data Cambridge, MA: MIT Press [Google Scholar]
  122. Wooldridge J. 2009. On estimating firm-level production functions using proxy variables to control for unobservables. Econ. Lett. 104:112–14 [Google Scholar]
  123. Zhang J, Gijbels I. 2003. Sieve empirical likelihood and extensions of the generalized least squares. Scand. J. Stat. 30:1–24 [Google Scholar]
/content/journals/10.1146/annurev-economics-080213-041155
Loading
/content/journals/10.1146/annurev-economics-080213-041155
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error