A parameter of an econometric model is identified if there is a one-to-one or many-to-one mapping from the population distribution of the available data to the parameter. Often, this mapping is obtained by inverting a mapping from the parameter to the population distribution. If the inverse mapping is discontinuous, then estimation of the parameter usually presents an ill-posed inverse problem. Such problems arise in many settings in economics and other fields in which the parameter of interest is a function. This article explains how ill-posedness arises and why it causes problems for estimation. The need to modify or regularize the identifying mapping is explained, and methods for regularization and estimation are discussed. Methods for forming confidence intervals and testing hypotheses are summarized. It is shown that a hypothesis test can be more precise in a certain sense than an estimator. An empirical example illustrates estimation in an ill-posed setting in economics.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Bickel PJ, Rosenblatt M. 1973. On some global measures of the deviations of density function estimates. Ann. Stat. 1:1071–95 [Google Scholar]
  2. Bissantz N, Dümbgen L, Holtzmann H, Munk A. 2007. Non-parametric confidence bands in deconvolution density estimation. J. R. Stat. Soc. B 69:483–506 [Google Scholar]
  3. Blundell R, Chen X, Kristensen D. 2007. Semi-nonparametric IV estimation of shape-invariant Engel curves. Econometrica 75:1613–69 [Google Scholar]
  4. Blundell R, Horowitz JL. 2007. A non-parametric test of exogeneity. Rev. Econ. Stud. 74:1035–58 [Google Scholar]
  5. Blundell R, Horowitz JL, Parey P. 2012. Measuring the price responsiveness of gasoline demand: economic shape restrictions and nonparametric demand estimation. Quant. Econ. 3:29–51 [Google Scholar]
  6. Blundell R, Powell JL. 2003. Endogeneity in nonparametric and semiparametric regression models. Advances in Economics and Econometrics: Theory and Applications, Eighth World Congress Vol. II Dewatripont M, Hansen LP, Turnovsky SJ. 312–57 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  7. Bonhomme S, Robin J-M. 2010. Generalized non-parametric deconvolution with an application to earnings dynamics. Rev. Econ. Stud. 77:491–533 [Google Scholar]
  8. Canay IA, Santos A, Shaikh AM. 2013. On the testability of identification in some nonparametric models with endogeneity. Econometrica 81:2535–59 [Google Scholar]
  9. Carrasco M, Florens J-P, Renault E. 2007. Linear inverse problems in structural econometrics estimation based on spectral decomposition and regularization. In Handbook of Econometrics, Vol. 6B, ed. JJ Heckman, EE Leamer, pp. 5633–51. Amsterdam: Elsevier Sci.
  10. Carroll RJ, Hall P. 1988. Optimal rates of convergence for deconvolving a density. J. Am. Stat. Assoc. 83:118486 [Google Scholar]
  11. Chalmond B. 2003. Modeling and Inverse Problems in Image Analysis New York: Springer-Verlag
  12. Chen X, Hong H, Nekipilov D. 2011. Nonlinear models of measurement errors. J. Econ. Lit. 49:901–37 [Google Scholar]
  13. Chen X, Pouzo D. 2012. Estimation of nonparametric conditional moment models with possibly nonsmooth generalized residuals. Econometrica 80:277–321 [Google Scholar]
  14. Chen X, Reiss M. 2007. On rate optimality for ill-posed inverse problems in econometrics. Econom. Theory 27:497–521 [Google Scholar]
  15. Darolles S, Fan Y, Florens J-P, Renault E. 2011. Nonparametric instrumental regression. Econometrica 79:1541–65 [Google Scholar]
  16. Delaigle A, Gijbels I. 2004. Practical bandwidth selection in deconvolution kernel density estimation. Comput. Stat. Data Anal. 45:249–67 [Google Scholar]
  17. Delaigle A, Hall P, Meister A. 2008. On deconvolution with repeated measurements. Ann. Stat. 36:665–85 [Google Scholar]
  18. Engl HW, Hanke M, Neubauer A. 1996. Regularization of Inverse Problems Dordrecht: Kluwer Acad.
  19. Fan J. 1991a. On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Stat. 19:1257–72 [Google Scholar]
  20. Fan J. 1991b. Asymptotic normality for deconvolution kernel density estimators. Sankhya A 53:97–110 [Google Scholar]
  21. Gautier E, Kitamura Y. 2013. Nonparametric estimation in random coefficients binary choice models. Econometrica 81:581–607 [Google Scholar]
  22. Haag BR, Hoderlein S, Pendakur K. 2009. Testing and imposing Slutsky symmetry in nonparametric demand systems. J. Econom. 153:33–50 [Google Scholar]
  23. Hadamard J. 1923. Lectures on Cauchy’s Problem in Linear Partial Differential Equations New Haven, CT: Yale Univ. Press
  24. Hall P, Horowitz JL. 2005. Nonparametric methods for inference in the presence of instrumental variables. Ann. Stat. 33:2904–29 [Google Scholar]
  25. Hall P, Horowitz JL. 2013. A simple bootstrap method for constructing nonparametric confidence bands for functions. Ann. Stat. 41:1892–921 [Google Scholar]
  26. Härdle W, Linton O. 1994. Applied nonparametric methods. Handbook of Econometrics Vol. IV Engle RF, McFadden D. 2295–339 Amsterdam: Elsevier Sci. [Google Scholar]
  27. Hausman JA, Newey WK. 1995. Nonparametric estimation of exact consumer surplus and deadweight loss. Econometrica 63:1445–76 [Google Scholar]
  28. Hoderlein S, Holzmann H. 2011. Demand analysis as an ill-posed inverse problem with semiparametric specification. Econom. Theory 27:609–38 [Google Scholar]
  29. Hoderlein S, Klemelä J, Mammen E. 2010. Analyzing the random coefficient model nonparametrically. Econom. Theory 26:804–37 [Google Scholar]
  30. Horowitz JL. 2006. Testing a parametric model against a nonparametric alternative with identification through instrumental variables. Econometrica 74:521–38 [Google Scholar]
  31. Horowitz JL. 2007. Asymptotic normality of a nonparametric instrumental variables estimator. Int. Econ. Rev. 48:1329–49 [Google Scholar]
  32. Horowitz JL. 2011. Applied nonparametric instrumental variables estimation. Econometrica 79:347–94 [Google Scholar]
  33. Horowitz JL. 2012a. Specification testing in nonparametric instrumental variables estimation. J. Econom. 167:383–96 [Google Scholar]
  34. Horowitz JL. 2012b. Adaptive nonparametric instrumental variables estimation: empirical choice of the regularization parameter. Work. Pap., Dep. Econ., Northwestern Univ., Evanston, IL
  35. Horowitz JL, Härdle W. 1996. Direct semiparametric estimation of single-index models with discrete covariates. J. Am. Stat. Assoc. 91:1632–40 [Google Scholar]
  36. Horowitz JL, Lee S. 2007. Nonparametric instrumental variables estimation of a quantile regression model. Econometrica 75:1191–208 [Google Scholar]
  37. Horowitz JL, Lee S. 2012. Uniform confidence bands for functions estimated nonparametrically with instrumental variables. J. Econom. 168:175–88 [Google Scholar]
  38. Horowitz JL, Markatou M. 1996. Semiparametric estimation of regression models for panel data. Rev. Econ. Stud. 63:145–68 [Google Scholar]
  39. Huber PJ. 1981. Robust Statistics New York: Wiley
  40. Johannes J. 2009. Deconvolution with unknown error distribution. Ann. Stat. 37:2301–23 [Google Scholar]
  41. Kress R. 1999. Linear Integral Equations New York: Springer-Verlag, 2nd ed..
  42. Li T. 2002. Robust and consistent estimation of nonlinear errors-in-variables models. J. Econom. 110:1–26 [Google Scholar]
  43. Li T, Hsiao C. 2004. Robust estimation of generalized linear models with measurement errors. J. Econom. 118:51–65 [Google Scholar]
  44. Li T, Perrigne I, Vuong Q. 2000. Conditionally independent private information in OCS wildcat auctions. J. Econom. 98:129–61 [Google Scholar]
  45. Linton O, Whang Y-J. 2002. Nonparametric estimation with aggregated data. Econom. Theory 18:420–68 [Google Scholar]
  46. Manski CF. 1988. Analog Estimation Methods in Econometrics London: Chapman & Hall
  47. Natterer F. 1986. The Mathematics of Computerized Tomography New York: Wiley
  48. Natterer F, Wübbeling F. 2001. Mathematical Methods in Image Reconstruction Philadelphia: Soc. Ind. Appl. Math.
  49. Newey WK. 2013. Nonparametric instrumental variables estimation. Am. Econ. Rev. 103:550–56 [Google Scholar]
  50. Newey WK, Powell JL. 2003. Instrumental variable estimation of nonparametric models. Econometrica 71:1565–78 [Google Scholar]
  51. Newey WK, Powell JL, Vella F. 1999. Nonparametric estimation of triangular simultaneous equations models. Econometrica 67:565–603 [Google Scholar]
  52. O’Sullivan F. 1986. A statistical perspective on ill-posed inverse problems. Stat. Sci. 1:502–18 [Google Scholar]
  53. Radon J. 1917. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. In Ber. Über Verhadlungen Königlich-Sächsischen Akad. Wiss. Leipzig. Math.-Phys. Klasse, 69:262–77 Leipzig: Teubner [Google Scholar]
  54. Rao CR. 1973. Linear Statistical Inference and Its Applications New York: Wiley., 2nd ed..
  55. Santos A. 2012. Inference in nonparametric instrumental variables with partial identification. Econometrica 80:213–75 [Google Scholar]
  56. Schennach SM. 2004a. Estimation of nonlinear models with measurement error. Econometrica 72:33–75 [Google Scholar]
  57. Schennach SM. 2004b. Nonparametric regression in the presence of measurement error. Econom. Theory 20:1046–93 [Google Scholar]
  58. Schucany WR, Sommers JP. 1977. Improvement of kernel type density estimators. J. Am. Stat. Assoc. 72:420–23 [Google Scholar]
  59. Silverman BW. 1978. Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Ann. Stat. 6:177–84 [Google Scholar]
  60. Silverman BW. 1986. Density Estimation for Statistics and Data Analysis London: Chapman & Hall
  61. Stone CJ. 1982. Optimal global rates of convergence for nonparametric regression. Ann. Stat. 10:1040–53 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error