1932

Abstract

We review recent developments in the econometrics of shape restrictions and their role in applied work. Our objectives are threefold. First, we aim to emphasize the diversity of applications in which shape restrictions have played a fruitful role. Second, we intend to provide practitioners with an intuitive understanding of how shape restrictions impact the distribution of estimators and test statistics. Third, we aim to provide an overview of new advances in the theory of estimation and inference under shape restrictions. Throughout the review, we outline open questions and interesting directions for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-economics-080217-053417
2018-08-02
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/economics/10/1/annurev-economics-080217-053417.html?itemId=/content/journals/10.1146/annurev-economics-080217-053417&mimeType=html&fmt=ahah

Literature Cited

  1. Abadie A, Angrist J, Imbens G 2002. Instrumental variables estimates of the effect of subsidized training on the quantiles of trainee earnings. Econometrica 70:91–117
    [Google Scholar]
  2. Abowd JM, Kramarz F, Margolis DN 1999. High wage workers and high wage firms. Econometrica 67:251–333
    [Google Scholar]
  3. Ai C, Chen X 2003. Efficient estimation of models with conditional moment restrictions containing unknown functions. Econometrica 71:1795–843
    [Google Scholar]
  4. Aït-Sahalia Y, Duarte J 2003. Nonparametric option pricing under shape restrictions. J. Econom. 116:9–47
    [Google Scholar]
  5. Aït-Sahalia Y, Lo AW 1998. Nonparametric estimation of state-price densities implicit in financial asset prices. J. Finance 53:499–547
    [Google Scholar]
  6. Allen R, Rehbeck J 2016. Complementarity in perturbed utility models Tech. Rep., Univ. Calif., San Diego
    [Google Scholar]
  7. Andrews DW 1999. Estimation when a parameter is on a boundary. Econometrica 67:1341–83
    [Google Scholar]
  8. Andrews DW 2001. Testing when a parameter is on the boundary of the maintained hypothesis. Econometrica 69:683–734
    [Google Scholar]
  9. Andrews DW, Cheng X 2012. Estimation and inference with weak, semi-strong, and strong identification. Econometrica 80:2153–211
    [Google Scholar]
  10. Andrews DW, Cheng X, Guggenberger P 2011. Generic results for establishing the asymptotic size of confidence sets and tests Discuss. Pap., Cowles Found. Res. Econ., Yale Univ., New Haven, CT
    [Google Scholar]
  11. Anevski D, Hössjer O 2006. A general asymptotic scheme for inference under order restrictions. Ann. Stat. 34:1874–930
    [Google Scholar]
  12. Armstrong T 2015. Adaptive testing on a regression function at a point. Ann. Stat. 43:2086–101
    [Google Scholar]
  13. Athey S, Haile PA 2007. Nonparametric approaches to auctions. Handbook of Econometrics 6A JJ Heckman, EE Learner 3847–965 Amsterdam: Elsevier
    [Google Scholar]
  14. Athey S, Stern S 1998. An empirical framework for testing theories about complimentarity in organizational design NBER Work. Pap 6600
    [Google Scholar]
  15. Balabdaoui F, Rufibach K, Wellner J 2009. Limit distribution theory for maximum likelihood estimation of a log-concave density. Ann. Stat. 37:1299–331
    [Google Scholar]
  16. Balabdaoui F, Wellner JA 2007. Estimation of a k-monotone density: limit distribution theory and the spline connection. Ann. Stat.2536–64
    [Google Scholar]
  17. Balke A, Pearl J 1997. Bounds on treatment effects from studies with imperfect compliance. J. Am. Stat. Assoc. 92:1171–76
    [Google Scholar]
  18. Beare BK, Dossani A 2018. Option augmented density forecasts of market returns with monotone pricing kernel. Quant. Finance 18:4623–35
    [Google Scholar]
  19. Beare BK, Fang Z 2018. Global limit theory for the Grenander estimator under nonstrict concavity. Electron. J. Stat. 11:23841–70
    [Google Scholar]
  20. Beare BK, Moon J-M 2015. Nonparametric tests of density ratio ordering. Econom. Theory 31:471–92
    [Google Scholar]
  21. Beare BK, Schmidt LD 2016. An empirical test of pricing kernel monotonicity. J. Appl. Econom. 31:338–56
    [Google Scholar]
  22. Bellec P 2016. Sharp oracle inequalities for Least Squares estimators in shape restricted regression. arXiv1510.08029 [math.ST]
  23. Belloni A, Chernozhukov V, Chetverikov D, Kato K 2015. Some new asymptotic theory for least squares series: pointwise and uniform results. J. Econom. 186:345–66
    [Google Scholar]
  24. Bhattacharya D 2017. The empirical content of discrete choice models Tech. Rep., Univ Cambridge, UK:
    [Google Scholar]
  25. Bhattacharya J, Shaikh AM, Vytlacil E 2008. Treatment effect bounds under monotonicity assumptions: an application to Swan-Ganz catheterization. Am. Econ. Rev. 98:351–56
    [Google Scholar]
  26. Birge L 1989. The Grenander estimator: a nonasymptotic approach. Ann. Stat. 17:1532–49
    [Google Scholar]
  27. Birge L 1997. Estimation of unimodal densities without smoothness assumptions. Ann. Stat. 25:970–81
    [Google Scholar]
  28. Blundell R, Chen X, Kristensen D 2007.a Semi-nonparametric IV estimation of shape-invariant Engel curves. Econometrica 75:1613–69
    [Google Scholar]
  29. Blundell R, Gosling A, Ichimura H, Meghir C 2007.b Changes in the distribution of male and female wages accounting for employment composition using bounds. Econometrica 75:323–63
    [Google Scholar]
  30. Blundell R, Horowitz J, Parey M 2013. Nonparametric estimation of a heterogeneous demand function under the Slutsky inequality restriction Tech. Rep., Cent. Microdata Methods Pract., London
    [Google Scholar]
  31. Blundell R, Horowitz JL, Parey M 2012. Measuring the price responsiveness of gasoline demand: economic shape restrictions and nonparametric demand estimation. Quant. Econ. 3:29–51
    [Google Scholar]
  32. Brunk H 1970. Estimation of isotonic regression. Nonparametric Techniques in Statistical Inference ML Puri 177–95 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  33. Cai T, Low M 2004. An adaptation theory for nonparametric confidence intervals. Ann. Stat. 32:1805–40
    [Google Scholar]
  34. Cai T, Low M, Xia Y 2013. Adaptive confidence intervals for regression functions under shape constraints. Ann. Stat. 41:722–50
    [Google Scholar]
  35. Card D, Cardoso AR, Heining J, Kline P 2016. Firms and labor market inequality: evidence and some theory NBER Work. Pap 22850
    [Google Scholar]
  36. Cattaneo MD, Jansson M, Nagasawa K 2017. Bootstrap-based inference for cube root consistent estimators. arXiv1704.08066 [math.ST]
  37. Chatterjee S, Guntuboyina A, Sen B 2014. On risk bounds in isotonic and other shape restricted regression problems. Ann. Stat. 43:1774–800
    [Google Scholar]
  38. Chatterjee S, Lafferty J 2015. Adaptive risk bounds in unimodal regression. arXiv1512.02956 [math.ST]
  39. Chen X 2007. Large sample sieve estimation of semi-nonparametric models. Handbook of Econometrics 6B JJ Heckman, EE Learner 5549–632 Amsterdam: Elsevier
    [Google Scholar]
  40. Chen X, Christensen TM 2018. Optimal sup-norm rates and uniform inference on nonlinear functionals of nonparametric IV regression. Quant. Econ. 9:39–84
    [Google Scholar]
  41. Chen X, Pouzo D 2015. Sieve Wald and QLR inferences on semi/nonparametric conditional moment models. Econometrica 83:1013–79
    [Google Scholar]
  42. Chen X, Santos A 2015. Overidentification in regular models Tech. Rep., Yale Univ New Haven, CT:
    [Google Scholar]
  43. Chernoff H 1954. On the distribution of the likelihood ratio. Ann. Math. Stat. 25:573–78
    [Google Scholar]
  44. Chernozhukov V, Chetverikov D, Kato K 2013. Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Stat. 41:2786–819
    [Google Scholar]
  45. Chernozhukov V, Chetverikov D, Kato K 2017. Central limit theorems and bootstrap in high dimensions. Ann. Probab. 45:52309–52
    [Google Scholar]
  46. Chernozhukov V, Fernández-Val I, Galichon A 2009. Improving point and interval estimators of monotone functions by rearrangement. Biometrika 96:559–75
    [Google Scholar]
  47. Chernozhukov V, Fernández-Val I, Galichon A 2010. Quantile and probability curves without crossing. Econometrica 78:1093–125
    [Google Scholar]
  48. Chernozhukov V, Hansen C 2005. An IV model of quantile treatment effects. Econometrica 73:245–61
    [Google Scholar]
  49. Chernozhukov V, Newey WK, Santos A 2015. Constrained conditional moment restriction models. arXiv1509.06311 [math.ST]
  50. Chesher A 2003. Identification in nonseparable models. Econometrica 71:1405–41
    [Google Scholar]
  51. Chetverikov D 2012. Testing regression monotonicity in econometric models. arXiv1212.6757 [math.ST]
  52. Chetverikov D, Wilhelm D 2017. Nonparametric instrumental variable estimation under monotonicity. Econometrica 85:1303–20
    [Google Scholar]
  53. Delgado MA, Escanciano JC 2012. Distribution-free tests of stochastic monotonicity. J. Econom. 170:68–75
    [Google Scholar]
  54. D'Haultfœuille X, Février P 2015. Identification of nonseparable triangular models with discrete instruments. Econometrica 83:1199–210
    [Google Scholar]
  55. Dümbgen L 1993. On nondifferentiable functions and the bootstrap. Probab. Theory Relat. Fields 95:125–40
    [Google Scholar]
  56. Dümbgen L 2003. Optimal confidence bands for shape-restricted curves. Bernoulli 9:423–49
    [Google Scholar]
  57. Dümbgen L, Rufibach K 2009. Maximum likelihood estimation of a log-concave density and its distribution function: basic properties and uniform consistency. Bernoulli 15:40–68
    [Google Scholar]
  58. Dümbgen L, Spokoiny VG 2001. Multiscale testing of qualitative hypotheses. Ann. Stat. 29:124–52
    [Google Scholar]
  59. Dupas P 2014. Short-run subsidies and long-run adoption of new health products: evidence from a field experiment. Econometrica 82:197–228
    [Google Scholar]
  60. Durot C, Kulikov VN, Lopuhaä HP 2012. The limit distribution of the l-error of Grenander-type estimators. Ann. Stat. 40:1578–608
    [Google Scholar]
  61. Eeckhout J, Kircher P 2011. Identifying sorting in theory. Rev. Econ. Stud. 78:872–906
    [Google Scholar]
  62. Eggermont PPB, LaRiccia VN 2001. Maximum Penalized Likelihood Estimation 1 Berlin: Springer
    [Google Scholar]
  63. Ellison G, Ellison SF 2011. Strategic entry deterrence and the behavior of pharmaceutical incumbents prior to patent expiration. Am. Econ. J. Microecon. 3:11–36
    [Google Scholar]
  64. Fang Z 2014. Optimal plug-in estimators of directionally differentiable functionals Tech. Rep., Texas A & M Univ College Station, TX:
    [Google Scholar]
  65. Fang Z, Santos A 2014. Inference on directionally differentiable functions. arXiv1404.3763 [math.ST]
  66. Fox JT, Lazzati N 2013. Identification of discrete choice models for bundles and binary games Tech. Rep., Cent. Microdata Methods Pract., London
    [Google Scholar]
  67. Freyberger J, Horowitz JL 2015. Identification and shape restrictions in nonparametric instrumental variables estimation. J. Econom. 189:41–53
    [Google Scholar]
  68. Freyberger J, Reeves B 2017. Inference under shape restrictions Tech. Rep., Univ. Wis., Madison
    [Google Scholar]
  69. Gentzkow M 2007. Valuing new goods in a model with complementarity: online newspapers. Am. Econ. Rev. 97:713–44
    [Google Scholar]
  70. Ghosal S, Sen A, van der Vaart AW 2000. Testing monotonicity of regression. Ann. Stat. 28:1054–82
    [Google Scholar]
  71. Gouriéroux C, Holly A, Monfort A 1981. Kuhn-Tucker, likelihood ratio and Wald tests for nonlinear models with inequality constraints on the parameters. J. Econom. 16:166
    [Google Scholar]
  72. Gouriéroux C, Holly A, Monfort A 1982. Likelihood ratio test, Wald test, and Kuhn-Tucker test in linear models with inequality constraints on the regression parameters. Econometrica 50:63–80
    [Google Scholar]
  73. Grenander U 1956. On the theory of mortality measurement: part II. Scand. Actuar. J. 1956:125–53
    [Google Scholar]
  74. Groeneboom P 1985. Estimating a monotone density. Proc. Berkeley Conf. Honor Jerzy Neyman Jack Kiefer II539–55 Belmont, CA: Wadsworth
    [Google Scholar]
  75. Groeneboom P, Jongbloed G 2014. Nonparametric Estimation Under Shape Constraints: Estimators, Algorithms and Asymptotics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  76. Groeneboom P, Wellner J 2001. Computing Chernoff's distribution. J. Comput. Graph. Stat. 10:338–400
    [Google Scholar]
  77. Guerre E, Perrigne I, Vuong Q 2000. Optimal nonparametric estimation of first-price auctions. Econometrica 68:525–74
    [Google Scholar]
  78. Guntuboyina A, Sen B 2015. Global risk bounds and adaptation in univariate convex regression. Probab. Theory Relat. Fields 163:379–411
    [Google Scholar]
  79. Haag BR, Hoderlein S, Pendakur K 2009. Testing and imposing Slutsky symmetry in nonparametric demand systems. J. Econom. 153:33–50
    [Google Scholar]
  80. Hagedorn M, Law TH, Manovskii I 2017. Identifying equilibrium models of labor market sorting. Econometrica 85:29–65
    [Google Scholar]
  81. Hahn J, Todd P, Van der Klaauw W 2001. Identification and estimation of treatment effects with a regression-discontinuity design. Econometrica 69:201–9
    [Google Scholar]
  82. Hall P, Horowitz JL 2005. Nonparametric methods for inference in the presence of instrumental variables. Ann. Stat. 33:2904–29
    [Google Scholar]
  83. Hall P, Huang L-S 2001. Nonparametric kernel regression subject to monotonicity constraints. Ann. Stat. 29:624–47
    [Google Scholar]
  84. Hansen LP 1985. A method for calculating bounds on the asymptotic covariance matrices of generalized method of moments estimators. J. Econom. 30:203–38
    [Google Scholar]
  85. Heckman JJ, Pinto R 2017. Unordered monotonicity NBER Work. Pap 23497
    [Google Scholar]
  86. Heckman JJ, Vytlacil EJ 2001. Instrumental variables, selection models, and tight bounds on the average treatment effect. Econometric Evaluation of Labour Market Policies M Lechner, F Pfeiffer 1–15 Berlin: Springer
    [Google Scholar]
  87. Heckman JJ, Vytlacil EJ 2005. Structural equations, treatment effects, and econometric policy evaluation. Econometrica 73:669–738
    [Google Scholar]
  88. Henderson DJ, List JA, Millimet DL, Parmeter CF, Price MK 2012. Empirical implementation of nonparametric first-price auction models. J. Econom. 168:17–28
    [Google Scholar]
  89. Hong H, Li J 2014. The numerical delta method and bootstrap Tech. Rep., Stanford Univ Stanford, CA:
    [Google Scholar]
  90. Horowitz JL 2009. Semiparametric and Nonparametric Methods in Econometrics Berlin: Springer
    [Google Scholar]
  91. Horowitz JL, Lee S 2017. Nonparametric estimation and inference under shape restrictions. J. Econom. 201:1108–26
    [Google Scholar]
  92. Imbens GW, Angrist JD 1994. Identification and estimation of local average treatment effects. Econometrica 62:467–75
    [Google Scholar]
  93. Imbens GW, Newey WK 2009. Identification and estimation of triangular simultaneous equations models without additivity. Econometrica 77:1481–512
    [Google Scholar]
  94. Imbens GW, Rubin DB 1997. Estimating outcome distributions for compliers in instrumental variables models. Rev. Econ. Stud. 64:555–74
    [Google Scholar]
  95. Jun SJ, Pinkse J, Wan Y 2010. A consistent nonparametric test of affiliation in auction models. J. Econom. 159:46–54
    [Google Scholar]
  96. Keuzenkamp HA, Barten AP 1995. Rejection without falsification on the history of testing the homogeneity condition in the theory of consumer demand. J. Econom. 67:103–27
    [Google Scholar]
  97. King AJ, Rockafellar RT 1993. Asymptotic theory for solutions in statistical estimation and stochastic programming. Math. Oper. Res. 18:148–62
    [Google Scholar]
  98. Kitagawa T 2015. A test for instrument validity. Econometrica 83:2043–63
    [Google Scholar]
  99. Kitamura Y, Stoye J 2013. Nonparametric analysis of random utility models: testing Tech. Rep., Yale Univ New Haven, CT:
    [Google Scholar]
  100. Kline P, Tartari M 2016. Bounding the labor supply responses to a randomized welfare experiment: a revealed preference approach. Am. Econ. Rev. 106:971–1013
    [Google Scholar]
  101. Koenker R, Mizera I 2010. Quasi-concave density estimation. Ann. Stat. 38:2998–3027
    [Google Scholar]
  102. Kosorok M 2008. Bootstrapping the Grenander estimator. Beyond Parametrics in Interdisciplinary Research: Festschrift in Honor of Professor Pranab K. Sen N Balakrishnan, EA Peña, MJ Silvapulle 282–92 Inst. Math. Stat. Collect. 1. Beachwood, OH: Inst. Math. Stat.
    [Google Scholar]
  103. Kreider B, Pepper JV, Gundersen C, Jolliffe D 2012. Identifying the effects of SNAP (food stamps) on child health outcomes when participation is endogenous and misreported. J. Am. Stat. Assoc. 107:958–75
    [Google Scholar]
  104. Kretschmer T, Miravete EJ, Pernas JC 2012. Competitive pressure and the adoption of complementary innovations. Am. Econ. Rev. 102:1540–70
    [Google Scholar]
  105. Lee DS 2009. Training, wages, and sample selection: estimating sharp bounds on treatment effects. Rev. Econ. Stud. 76:1071–102
    [Google Scholar]
  106. Lee S, Salanié B 2017. Identifying effects of multivalued treatments Tech. Rep., Columbia Univ., New York
    [Google Scholar]
  107. Lee S, Song K, Whang Y-J 2018. Testing for a general class of functional inequalities. Econom. Theory. In press
    [Google Scholar]
  108. Lee Y-Y, Bhattacharya D 2016. Applied welfare analysis for discrete choice with interval-data on income Tech. Rep., Univ. Calif., Irvine
    [Google Scholar]
  109. Leeb H, Pötscher BM 2005. Model selection and inference: facts and fiction. Econom. Theory 21:21–59
    [Google Scholar]
  110. Lewbel A 1995. Consistent nonparametric hypothesis tests with an application to Slutsky symmetry. J. Econom. 67:379–401
    [Google Scholar]
  111. Li T, Perrigne I, Vuong Q 2002. Structural estimation of the affiliated private value auction model. RAND J. Econ. 33:171–93
    [Google Scholar]
  112. Low M 1997. On nonparametric confidence intervals. Ann. Stat. 25:2547–54
    [Google Scholar]
  113. Luo Y, Wan Y 2018. Integrated-quantile-based estimation for first-price auction models. J. Bus. Econ. Stat. 36:1173–80
    [Google Scholar]
  114. Machado C, Shaikh A, Vytlacil E 2013. Instrumental variables and the sign of the average treatment effect Tech. Rep., Univ. Chicago
    [Google Scholar]
  115. Manski CF 1989. Anatomy of the selection problem. J. Hum. Resour. 24:343–60
    [Google Scholar]
  116. Manski CF 1997. Monotone treatment response. Econometrica 65:1311–34
    [Google Scholar]
  117. Manski CF, Pepper JV 2000. Monotone instrumental variables: with an application to the returns to schooling. Econometrica 68:997–1010
    [Google Scholar]
  118. Matzkin RL 1991. Semiparametric estimation of monotone and concave utility functions for polychotomous choice models. Econometrica 59:1315–27
    [Google Scholar]
  119. Matzkin RL 1992. Nonparametric and distribution-free estimation of the binary threshold crossing and the binary choice models. Econometrica 60:239–70
    [Google Scholar]
  120. Matzkin RL 1994. Restrictions of economic theory in nonparametric methods. Handbook of Econometrics 4 R Engle, D McFadden 2523–58 Amsterdam: Elsevier
    [Google Scholar]
  121. Matzkin RL 2003. Nonparametric estimation of nonadditive random functions. Econometrica 71:1339–75
    [Google Scholar]
  122. McFadden D, Richter MK 1990. Stochastic rationality and revealed stochastic preference. Preferences, Uncertainty, and Optimality: Essays in Honor of Leonid Hurwicz JS Chipman 161–86 Boulder, CO: Westview Press
    [Google Scholar]
  123. Mikusheva A 2007. Uniform inference in autoregressive models. Econometrica 75:1411–52
    [Google Scholar]
  124. Milgrom P, Roberts J 1995. Complementarities and fit strategy, structure, and organizational change in manufacturing. J. Account. Econ. 19:179–208
    [Google Scholar]
  125. Mogstad M, Santos A, Torgovitsky A 2017. Using instrumental variables for inference about policy relevant treatment parameters NBER Work. Pap 23568
    [Google Scholar]
  126. Newey WK, Powell JL 2003. Instrumental variable estimation of nonparametric models. Econometrica 71:1565–78
    [Google Scholar]
  127. Nishimura H, Ok EA 2012. Solvability of variational inequalities on Hilbert lattices. Math. Oper. Res. 37:608–25
    [Google Scholar]
  128. Pakes A, Porter J 2013. Moment inequalities for semiparametric multinomial choice with fixed effects Tech. Rep., Harvard Univ Cambridge, MA:
    [Google Scholar]
  129. Politis DN, Romano J, Wolf M 1999. Subsampling Berlin: Springer
    [Google Scholar]
  130. Prakasa Rao B 1969. Estimation of a unimodal density. Sankhya Indian J. Stat. A 31:23–36
    [Google Scholar]
  131. Robertson T, Wright F, Dykstra R 1988. Order Restricted Statistical Inference New York: Wiley
    [Google Scholar]
  132. Romano JP, Shaikh AM 2012. On the uniform asymptotic validity of subsampling and the bootstrap. Ann. Stat. 40:2798–822
    [Google Scholar]
  133. Rosenberg JV, Engle RF 2002. Empirical pricing kernels. J. Financ. Econ. 64:341–72
    [Google Scholar]
  134. Rufibach K 2007. Computing maximum likelihood estimators of a log-concave density function. J. Stat. Comput. Simul. 77:561–74
    [Google Scholar]
  135. Samuelson PA 1938. A note on the pure theory of consumer's behaviour. Economica 5:61–71
    [Google Scholar]
  136. Scaillet O 2016. On ill-posedness of nonparametric instrumental variable regression with convexity constraints. Econom. J. 19:232–36
    [Google Scholar]
  137. Self SG, Liang K-Y 1987. Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J. Am. Stat. Assoc. 82:605–10
    [Google Scholar]
  138. Sen B, Banerjee M, Woodroofe M 2010. Inconsistency of bootstrap: the Grenander estimator. Ann. Stat. 38:1953–77
    [Google Scholar]
  139. Shao J 1994. Bootstrap sample size in nonregular cases. Proc. Am. Math. Soc. 122:1251–62
    [Google Scholar]
  140. Shapiro A 1989. Asymptotic properties of statistical estimators in stochastic programming. Ann. Stat. 17:841–58
    [Google Scholar]
  141. Shapiro A 1991. Asymptotic analysis of stochastic programs. Ann. Oper. Res. 30:169–86
    [Google Scholar]
  142. Shi X, Shum M 2016. Estimating semi-parametric panel multinomial choice models using cyclic monotonicity Tech. Rep., Univ. Wis., Madison
    [Google Scholar]
  143. Shimer R, Smith L 2000. Assortative matching and search. Econometrica 68:343–69
    [Google Scholar]
  144. Slutsky E 1915. Sulla teoria del bilancio dei consumatore. G. Econ. Riv. Stat. 51:1–26
    [Google Scholar]
  145. Staiger D, Stock JH 1997. Instrumental variables regression with weak instruments. Econometrica 65:557–86
    [Google Scholar]
  146. Torgovitsky A 2015. Identification of nonseparable models using instruments with small support. Econometrica 83:1185–97
    [Google Scholar]
  147. Tripathi G, Kim W 2003. Nonparametric estimation of homogeneous functions. Econom. Theory 19:640–63
    [Google Scholar]
  148. van der Vaart A 1989. On the asymptotic information bound. Ann. Stat. 17:1487–500
    [Google Scholar]
  149. Vytlacil E 2002. Independence, monotonicity, and latent index models: an equivalence result. Econometrica 70:331–41
    [Google Scholar]
  150. Wolak FA 1989. Testing inequality constraints in linear econometric models. J. Econom. 41:205–35
    [Google Scholar]
  151. Zarantonello EH 1971. Projections on Convex Sets in Hilbert Space and Spectral Theory Madison, WI: Univ. Wis
    [Google Scholar]
  152. Zeidler E 1984. Nonlinear Functional Analysis and Its Applications III Berlin: Springer
    [Google Scholar]
  153. Zhang C-H 2002. Risk bounds in isotonic regression. Ann. Stat. 30:528–55
    [Google Scholar]
/content/journals/10.1146/annurev-economics-080217-053417
Loading
/content/journals/10.1146/annurev-economics-080217-053417
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error