1932

Abstract

The bootstrap is a method for estimating the distribution of an estimator or test statistic by resampling one's data or a model estimated from the data. Under conditions that hold in a wide variety of econometric applications, the bootstrap provides approximations to distributions of statistics, coverage probabilities of confidence intervals, and rejection probabilities of hypothesis tests that are more accurate than the approximations of first-order asymptotic distribution theory. The reductions in the differences between true and nominal coverage or rejection probabilities can be very large. In addition, the bootstrap provides a way to carry out inference in certain settings where obtaining analytic distributional approximations is difficult or impossible. This article explains the usefulness and limitations of the bootstrap in contexts of interest in econometrics. The presentation is informal and expository. It provides an intuitive understanding of how the bootstrap works. Mathematical details are available in the references that are cited.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-economics-080218-025651
2019-08-02
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/economics/11/1/annurev-economics-080218-025651.html?itemId=/content/journals/10.1146/annurev-economics-080218-025651&mimeType=html&fmt=ahah

Literature Cited

  1. Abrevaya J, Huang J. 2005. On the bootstrap of the maximum score estimator. Econometrica 73:1175–204
    [Google Scholar]
  2. Amemiya T. 1985. Advanced Econometrics Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  3. Andrews DWK. 2000. Inconsistency of the bootstrap when a parameter is on the boundary of the parameter space. Econometrica 68:399–405
    [Google Scholar]
  4. Andrews DWK. 2004. The block-block bootstrap: improved asymptotic refinements. Econometrica 72:673–700
    [Google Scholar]
  5. Andrews DWK, Barwick PL. 2012. Inference for parameters defined by moment inequalities: a recommended moment selection procedure. Econometrica 80:2805–26
    [Google Scholar]
  6. Andrews DWK, Guggenberger P. 2009. Hybrid and size-corrected subsampling methods. Econometrica 77:721–62
    [Google Scholar]
  7. Andrews DWK, Guggenberger P. 2010. Asymptotic size and a problem with subsampling and with the m out of n bootstrap. Econom. Theory 26:426–68
    [Google Scholar]
  8. Andrews DWK, Han S. 2009. Invalidity of the bootstrap and the m out of n bootstrap for confidence interval endpoints defined by moment inequalities. Econom. J. 12:S172–99
    [Google Scholar]
  9. Bassett G, Koenker R. 1978. Asymptotic theory of least absolute error regression. J. Am. Stat. Assoc. 73:618–21
    [Google Scholar]
  10. Beran R, Ducharme GR. 1991. Asymptotic Theory for Bootstrap Methods in Statistics Montreal, Can: Publ. CRM
    [Google Scholar]
  11. Bertail P. 1997. Second-order properties of an extrapolated bootstrap without replacement under weak assumptions. Bernoulli 3:149–79
    [Google Scholar]
  12. Bertail P, Politis DN, Romano JP 1999. On subsampling estimators with unknown rate of convergence. J. Am. Stat. Assoc. 94:569–79
    [Google Scholar]
  13. Bickel PJ, Freedman DA. 1981. Some asymptotic theory for the bootstrap. Ann. Stat. 9:1196–217
    [Google Scholar]
  14. Bickel PJ, Götze F, van Zwet WR 1997. Resampling fewer than n observations: gains, losses, and remedies for losses. Stat. Sin. 7:1–32
    [Google Scholar]
  15. Bose A. 1988. Edgeworth correction by bootstrap in autoregressions. Ann. Stat. 16:1709–22
    [Google Scholar]
  16. Bose A. 1990. Bootstrap in moving average models. Ann. Inst. Stat. Math. 42:753–68
    [Google Scholar]
  17. Bowlus A, Neumann G, Kiefer N 2001. Equilibrium search models and the transition from school to work. Int. Econ. Rev. 42:317–43
    [Google Scholar]
  18. Brown BW. 2000. Simulation variance reduction for bootstrapping. Simulation-Based Econometrics: Methods and Applications R Mariano, T Schuermann, M Weeks 437–73 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  19. Bugni FA. 2010. Bootstrap inference in partially identified models defined by moment inequalities. Econometrica 78:735–53
    [Google Scholar]
  20. Bugni FA. 2016. Comparison of inferential methods in partially identified models in terms of error in coverage probability. Econom. Theory 32:187–242
    [Google Scholar]
  21. Bugni FA, Canay IA, Shi X 2015. Specification tests for partially identified models defined by moment conditions. J. Econom. 185:259–82
    [Google Scholar]
  22. Bugni FA, Canay IA, Shi X 2017. Inference for subvectors and other functions of partially identified parameters in moment inequality models. Quant. Econ. 8:1–38
    [Google Scholar]
  23. Bühlmann P. 1997. Sieve bootstrap for time series. Bernoulli 3:123–48
    [Google Scholar]
  24. Bühlmann P. 1998. Sieve bootstrap for smoothing nonstationary time series. Ann. Stat. 26:48–83
    [Google Scholar]
  25. Bühlmann P, van de Geer S 2011. Statistics for High Dimensional Data Berlin: Springer
    [Google Scholar]
  26. Cao-Abad R. 1991. Rate of convergence for the wild bootstrap in nonparametric regression. Ann. Stat. 19:2226–31
    [Google Scholar]
  27. Carlstein E. 1986. The use of subseries methods for estimating the variance of a general statistic from a stationary time series. Ann. Stat. 14:1171–79
    [Google Scholar]
  28. Cattaneo M, Jansson M, Nagasawa K 2018. Bootstrap-based inference for cube root consistent estimators Work. Pap., Dep. Stat., Univ. Mich Ann Arbor:
    [Google Scholar]
  29. Cavanagh CL. 1987. Limiting behavior of estimators defined by optimization Unpublished manuscript, Dep. Econ., Harvard Univ Cambridge, MA:
    [Google Scholar]
  30. Chatterjee A, Lahiri SN. 2011. Bootstrapping Lasso estimators. J. Am. Stat. Assoc. 106:608–25
    [Google Scholar]
  31. Chatterjee A, Lahiri SN. 2013. Rates of convergence of the adaptive LASSO estimators to the oracle distribution and higher order refinements by the bootstrap. Ann. Stat. 41:1232–59
    [Google Scholar]
  32. Chernozhukov V, Chetverikov D, Kato K 2013. Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Stat. 41:2786–819
    [Google Scholar]
  33. Chernozhukov V, Hong H. 2004. Likelihood estimation and inference in a class of nonregular econometric models. Econometrica 72:1445–80
    [Google Scholar]
  34. Chesher A, Jewitt I. 1987. The bias of a heteroskedasticity consistent covariance matrix estimator. Econometrica 55:1217–22
    [Google Scholar]
  35. Choi E, Hall P. 2000. Bootstrap confidence regions computed from autoregressions of arbitrary order. J. R. Stat. Soc. B 62:461–77
    [Google Scholar]
  36. Chung K-H, Lee SMS. 2001. Optimal bootstrap sample size in construction of percentile confidence bounds. Scand. J. Stat. 28:225–39
    [Google Scholar]
  37. Datta S, McCormick WP. 1995. Some continuous Edgeworth expansions for Markov chains with applications to bootstrap. J. Multivar. Anal. 52:83–106
    [Google Scholar]
  38. Davidson R, Flachaire E. 2008. The wild bootstrap, tamed at last. J. Econom. 146:162–69
    [Google Scholar]
  39. Davidson R, MacKinnon JG. 1999. The size distortion of bootstrap tests. Econom. Theory 15:361–76
    [Google Scholar]
  40. Davison AC, Hinkley DV. 1997. Bootstrap Methods and Their Application Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  41. De Angelis D, Hall P, Young GA 1993. Analytical and bootstrap approximations to estimator distributions in L1 regression. J. Am. Stat. Assoc. 88:1310–16
    [Google Scholar]
  42. Donald SG, Paarsch HJ. 1996. Identification, estimation, and testing in empirical models of auctions within the independent private values paradigm. Econom. Theory 12:517–67
    [Google Scholar]
  43. Efron B. 1979. Bootstrap methods: another look at the jackknife. Ann. Stat. 7:1–26
    [Google Scholar]
  44. Efron B, Tibshirani RJ. 1993. An Introduction to the Bootstrap New York: Chapman & Hall
    [Google Scholar]
  45. Eicker F. 1963. Asymptotic normality and consistency of the least squares estimators for families of linear regressions. Ann. Math. Stat. 34:447–56
    [Google Scholar]
  46. Eicker F. 1967. Limit theorems for regression with unequal and dependent errors. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability L LeCam, J Neyman 59–82 Berkeley, CA: Univ. Calif. Press
    [Google Scholar]
  47. Fan J, Gijbels I. 1996. Local Polynomial Modelling and Its Applications New York: Chapman & Hall
    [Google Scholar]
  48. Fan J, Hu T-C, Truong YK 1994. Robust nonparametric function estimation. Scand. J. Stat. 21:433–46
    [Google Scholar]
  49. Flinn C, Heckman J. 1982. New methods for analyzing structural models of labor force dynamics. J. Econom. 18:115–68
    [Google Scholar]
  50. Gill RD. 1989. Non- and semi-parametric maximum likelihood estimators and the von Mises method (Part 1). Scand. J. Stat. 16:97–128
    [Google Scholar]
  51. Hahn J. 1995. Bootstrapping the quantile regression estimators. Econom. Theory 11:105–21
    [Google Scholar]
  52. Hall P. 1985. Resampling a coverage process. Stoch. Process Appl. 19:259–69
    [Google Scholar]
  53. Hall P. 1990. Asymptotic properties of the bootstrap for heavy-tailed distributions. Ann. Probab. 18:1342–60
    [Google Scholar]
  54. Hall P. 1992. The Bootstrap and Edgeworth Expansion Berlin: Springer
    [Google Scholar]
  55. Hall P. 1994. Methodology and theory for the bootstrap. Handbook of Econometrics 4 RF Engle, DF McFadden 2341–81 Amsterdam: Elsevier
    [Google Scholar]
  56. Hall P, Horowitz JL. 1996. Bootstrap critical values for tests based on generalized-method-of-moments estimators. Econometrica 64:891–916
    [Google Scholar]
  57. Hall P, Horowitz JL. 2013. A simple bootstrap method for constructing nonparametric confidence bands for functions. Ann. Stat. 41:1892–921
    [Google Scholar]
  58. Hall P, Horowitz JL, Jing B-Y 1995. On blocking rules for the bootstrap with dependent data. Biometrika 82:561–74
    [Google Scholar]
  59. Hall P, Jing B-Y. 1996. On sample reuse methods for dependent data. J. R. Stat. Soc. B 58:727–37
    [Google Scholar]
  60. Härdle W. 1990. Applied Nonparametric Regression Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  61. Härdle W, Horowitz JL, Kreiss J-P 2003. Bootstrap methods for time series. Int. Stat. Rev. 71:435–59
    [Google Scholar]
  62. Härdle W, Mammen E. 1993. Comparing nonparametric versus parametric regression fits. Ann. Stat. 21:1926–47
    [Google Scholar]
  63. Härdle W, Marron JS. 1991. Bootstrap simultaneous error bars for nonparametric regression. Ann. Stat. 19:778–96
    [Google Scholar]
  64. Heckman JJ, Smith J, Clements N 1997. Making the most out of programme evaluations and social experiments: accounting for heterogeneity in programme impacts. Rev. Econ. Stud. 64:487–535
    [Google Scholar]
  65. Hirano K, Porter JR. 2003. Asymptotic efficiency in parametric structural models with parameter dependent support. Econometrica 71:1307–38
    [Google Scholar]
  66. Hong H, Li J. 2015. The numerical bootstrap Work. Pap., Dep. Econ., Stanford Univ Stanford, CA:
    [Google Scholar]
  67. Horowitz JL. 1992. A smoothed maximum score estimator for the binary response model. Econometrica 60:505–31
    [Google Scholar]
  68. Horowitz JL. 1994. Bootstrap-based critical values for the information-matrix test. J. Econom. 61:395–411
    [Google Scholar]
  69. Horowitz JL. 1997. Bootstrap methods in econometrics: theory and numerical performance. Advances in Economics and Econometrics: Theory and Applications 3 DM Kreps, KF Wallis 188–222 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  70. Horowitz JL. 1998a. Bootstrap methods for covariance structures. J. Hum. Resour. 33:39–61
    [Google Scholar]
  71. Horowitz JL. 1998b. Bootstrap methods for median regression models. Econometrica 66:1327–51
    [Google Scholar]
  72. Horowitz JL. 2001. The bootstrap. Handbook of Econometrics 5 JL Heckman, E Leamer 3159–228 Amsterdam: Elsevier
    [Google Scholar]
  73. Horowitz JL. 2002. Bootstrap critical values for tests based on the smoothed maximum score estimator. J. Econom. 111:141–67
    [Google Scholar]
  74. Horowitz JL. 2003. Bootstrap methods for Markov processes. Econometrica 71:1049–82
    [Google Scholar]
  75. Horowitz JL, Krishnamurthy A. 2018. A bootstrap method for constructing pointwise and uniform confidence bands for conditional quantile functions. Stat. Sin. 28:2609–32
    [Google Scholar]
  76. Jeong G, Maddala GS. 1993. A perspective on application of bootstrap methods in econometrics. Handbook of Statistics 11 GS Maddala, CR Rao, HD Vinod 573–610 Amsterdam: North-Holland
    [Google Scholar]
  77. Kennan J, Neumann GR. 1988. Why does the information matrix test reject so often? Work. Pap 88–4 Dep. Econ., Univ. Iowa Iowa City:
    [Google Scholar]
  78. Kim J, Pollard D. 1990. Cube root asymptotics. Ann. Stat. 18:191–219
    [Google Scholar]
  79. Knight K, Fu W. 2000. Asymptotics for LASSO-type estimators. Ann. Stat. 28:1356–78
    [Google Scholar]
  80. Koenker R, Bassett G. 1978. Regression quantiles. Econometrica 46:33–50
    [Google Scholar]
  81. Kreiss J-P. 1988. Asymptotic statistical inference for a class of stochastic processes Work. Pap., Univ. Hamburg, Ger
    [Google Scholar]
  82. Kreiss J-P. 1992. Bootstrap procedures for AR(∞) processes. Bootstrapping and Related Techniques KH Jöckel, G Rothe, W Sender 107–13 Lect. Notes Econ. Math. Syst. 376 Berlin: Springer
    [Google Scholar]
  83. Kreiss J-P. 2000. Residual and wild bootstrap for infinite order autoregressions Work. Pap., Inst. Math. Stoch., Tech. Univ Braunschweig, Ger:
    [Google Scholar]
  84. Künsch HR. 1989. The jackknife and the bootstrap for general stationary observations. Ann. Stat. 17:1217–41
    [Google Scholar]
  85. Lahiri SN. 2003. Resampling Methods for Dependent Data Berlin: Springer
    [Google Scholar]
  86. Liu RY. 1988. Bootstrap procedures under some non-i.i.d. models. Ann. Stat. 16:1696–708
    [Google Scholar]
  87. MacKinnon JG, White H. 1985. Some heteroskedasticity consistent covariance matrix estimators with improved finite sample properties. J. Econom. 29:305–25
    [Google Scholar]
  88. Mammen E. 1992. When Does Bootstrap Work? Asymptotic Results and Simulations Berlin: Springer
    [Google Scholar]
  89. Mammen E. 1993. Bootstrap and wild bootstrap for high dimensional linear models. Ann. Stat. 21:255–85
    [Google Scholar]
  90. Manski CF. 1975. Maximum score estimation of the stochastic utility model of choice. J. Econom. 3:205–28
    [Google Scholar]
  91. Manski CF. 1985. Semiparametric analysis of discrete response: asymptotic properties of the maximum score estimator. J. Econom. 27:313–34
    [Google Scholar]
  92. Orme C. 1990. The small-sample performance of the information-matrix test. J. Econom. 46:309–31
    [Google Scholar]
  93. Paparoditis E. 1996. Bootstrapping autoregresive and moving average parameter estimates of infinite order vector autoregressive processes. J. Multivar. Anal. 57:277–96
    [Google Scholar]
  94. Patra RK, Seijo E, Sen B 2018. A consistent bootstrap procedure for the maximum score estimator. J. Econom. 205:488–507
    [Google Scholar]
  95. Politis DN, Romano JP. 1993. The stationary bootstrap. J. Am. Stat. Assoc. 89:1303–13
    [Google Scholar]
  96. Politis DN, Romano JP. 1994. Large sample confidence regions based on subsamples under minimal assumptions. Ann. Stat. 22:2031–50
    [Google Scholar]
  97. Politis DN, Romano JP, Wolf M 1997. Subsampling for heteroskedastic time series. J. Econom. 81:281–317
    [Google Scholar]
  98. Politis DN, Romano JP, Wolf M 1999. Subsampling Berlin: Springer
    [Google Scholar]
  99. Powell JL. 1984. Least absolute deviations estimation for the censored regression model. J. Econom. 25:303–25
    [Google Scholar]
  100. Powell JL. 1986. Censored regression quantiles. J. Econom. 32:143–55
    [Google Scholar]
  101. Pretorius C, Swanepoel JWH. 2018. On the asymptotic theory of new bootstrap confidence bounds. Ann. Stat. 46:438–56
    [Google Scholar]
  102. Rajarshi MB. 1990. Bootstrap in Markov-sequences based on estimates of transition density. Ann. Inst. Stat. Math. 42:253–68
    [Google Scholar]
  103. Rice J. 1984. Bandwidth choice for nonparametric regression. Ann. Stat. 12:1215–30
    [Google Scholar]
  104. Shao U, Tu D. 1995. The Jackknife and Bootstrap Berlin: Springer
    [Google Scholar]
  105. Spokoiny V, Zhilova M. 2015. Bootstrap confidence sets under model misspecification. Ann. Stat. 43:2653–75
    [Google Scholar]
  106. Swanepoel JWH. 1986. A note on proving that the (modified) bootstrap works. Commun. Stat. Theory Methods 15:3193–203
    [Google Scholar]
  107. Taylor LW. 1987. The size bias of White's information matrix test. Econ. Lett. 24:63–67
    [Google Scholar]
  108. Tibshirani R. 1996. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 58:267–88
    [Google Scholar]
  109. Vinod HD. 1993. Bootstrap methods: applications in econometrics. Handbook of Statistics 11 GS Maddala, CR Rao, HD Vinod 629–61 Amsterdam: North-Holland
    [Google Scholar]
  110. White H. 1980. A heteroscedasticity-consistent covariance matrix estimator and a direct test for heteroscedasticity. Econometrica 48:817–38
    [Google Scholar]
  111. White H. 1982. Maximum likelihood estimation of misspecified models. Econometrica 50:1–25
    [Google Scholar]
  112. Wu CFJ. 1986. Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Stat. 14:1261–95
    [Google Scholar]
  113. Yu K, Jones MC. 1998. Local linear quantile regression. J. Am. Stat. Assoc. 93:228–37
    [Google Scholar]
  114. Zou H. 2006. The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc. 101:1418–29
    [Google Scholar]
/content/journals/10.1146/annurev-economics-080218-025651
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error